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As modern data mining applications increase in complexity, so too do their 
demands for resources. Grid computing is one of several emerging networked 
computing paradigms promising to meet the requirements of heterogeneous, 
large-scale, and distributed data mining applications. Despite this promise, there 
are still too many issues to be resolved before grid technology is commonly 
applied to large-scale data mining tasks. To address some of these issues, the 
authors developed the DataMiningGrid system. It integrates a diverse set of 
programs and application scenarios within a single framework, and features 
scalability, !exible extensibility, sophisticated support for relevant standards 
and different users.

D ata mining facilitates the auto-
mated extraction of potentially 
useful information from large 

volumes of data. Expanding data vol-
umes and the geographic distribution 
of applications in many modern knowl-
edge sectors are fueling the need for 
novel data mining solutions. Recent 
trends that leverage network-based 
infrastructures include distributed 
data mining in peer-to-peer networks, 
mobile and embedded devices, sen-
sor networks, and both parallel and 
 privacy-preserving data mining.

Data mining in grid1 computing 
environments represents a speci!c in-
carnation of distributed data mining 
motivated by resource sharing via lo-
cal and wide area networks.2 Increased 
performance, scalability, access, and re-

source exploitation are the key drivers 
behind such endeavors. However, several 
factors hamper large-scale data mining 
applications on a grid. To begin with, 
grid computing is relatively new, and 
relevant standards and technologies are 
still evolving. A plethora of data mining 
technologies and a staggering number of 
largely varying data mining application 
scenarios further complicate matters. 
Finally, data mining clients range from 
highly domain-oriented end users to 
technology-aware specialists. To the for-
mer, user transparency and ease-of-use 
is paramount, whereas the latter group 
needs control of certain detailed aspects 
of data mining and grid technology.

In the DataMiningGrid project 
(www.datamininggrid.org), we’ve 
aimed to address the requirements of 
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modern data mining application scenarios — in 
particular, those that involve sophisticated re-
source sharing.3

Use Cases and Requirements 
In order to determine the requirements of a 
generic grid system that will support demand-
ing data mining applications, we analyzed use 
case scenarios from a wide range of application 
 areas. These included ecological modeling, com-
putational biology and bioinformatics, customer 
relationships and quality management in the au-
tomotive industry, performance monitoring and 
fault diagnosis in network computing systems, 
and analysis of distributed data in large-scale 
medical studies. We faced key challenges inte-
grating the requirements of all these complex 
application scenarios into a single framework:

Grid-enabling data mining applications 
shouldn’t require modi!cation of source code. 
We had to grid-enable numerous data min-
ing applications, ranging from the well-
known toolkit Weka, which runs on a Java 

•

Virtual Machine (JVM), to proprietary 
 machine-learning, text mining, and ontol-
ogy-learning applications that only execute 
on speci!c platforms and use special librar-
ies. Bearing in mind the diversity of the ap-
plication scenarios, we couldn’t restrict the 
system to speci!c data mining applications, 
tools, techniques, or algorithms. It also had 
to support various types of data sources, in-
cluding database management systems and 
data sets stored in !le systems. 
Ef!ciency, novel use, and improved resource 
exploitation. Our grid-based data mining 
environment had to offer one or more of the 
following bene!ts: increased performance for 
data mining applications (speed-up, through-
put), high scalability to serve more users and 
more demanding applications, possibilities 
for the creation of novel work"ow-based data 
mining applications (for example, combin-
ing several data mining tasks to cover pre-
processing, processing, and postprocessing 
stages), and improved exploitation of exist-
ing hardware and software resources. 

•
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Figure 1. The DataMiningGrid system architecture in four layers. Generally, components in higher layers 
use the components organized in lower layers. The software and hardware resources layer sits at the 
bottom, the Globus Toolkit 4 layer depicts some of the system’s core grid middleware components, the 
high-level services layer shows components providing central DataMiningGrid services, and the client 
components layer depicts the DataMiningGrid applications’ client-side components.
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Usability. To ensure that the system was easy 
to use, we had to hide the grid’s intricate 
technological details from domain-oriented 
users, but we also provided ways for techni-
cally knowledgeable users to de!ne, con!g-
ure, and parameterize application details.

The collected requirements implied various 
complex system components, such as a work"ow 
editor and manager, a resource manager, grid-
based data management, security mechanisms, 
an execution management system, and so on. To 
speed up development and reduce costs, we based 
the system design on existing open technology.

DataMiningGrid System and Features
To address our requirements, the DataMiningGrid 
system is designed according to three principles: 
service-oriented architecture (SOA), standard-
ization, and open technology. SOA promotes the 
sharing of geographically dispersed business 
functions in a "exible way. We exploited SOA’s 
main advantages, such as loose coupling, ease 
and "exibility of reuse, scalability, interoper-
ability, and service abstraction from underlying 
technologies.4 To ensure the DataMiningGrid 
system’s seamless evolution, we made it support 
two important distributed computing standards: 
the Open Grid Service Architecture (OGSA, www.
globus.org/ogsa) and the Web Services Resource 
Framework (WSRF, www.oasis-open.org).

Figure 1 depicts the DataMiningGrid system 
architecture in four layers. Generally, compo-
nents in higher layers use the components orga-
nized in lower layers. The software and hardware 
resources layer sits at the bottom, the Globus 
Toolkit 4 layer depicts some of the system’s core 
grid middleware components, the high-level ser-
vices layer shows components providing central 
DataMiningGrid services, and the client compo-
nents layer depicts the DataMiningGrid applica-
tions’ client-side components. 

Application Description Schema
A metadata schema de!nition, which we call 
an Application Description Schema (ADS), 
manages user interaction with system archi-
tecture components to grid-enable existing 
data mining applications, and helps register 
and search for software on the grid, match jobs 
with suitable computational resources, and dy-
namically create user interfaces. Instances of 
the ADS are XML documents at various levels 

• of speci!cation, which are passed among sys-
tem components. 

A fully speci!ed instance of the ADS contains

general information, that is, the application’s 
narrative description, program vendor, ver-
sion, and so on; 
implementation aspects, such as the ap-
plication’s operating system (Windows or 
Linux), programming language, execut-
able !les and their storage locations, and 
requirements, such as CPU architecture, 
memory, and disk space; 
parameters that de!ne the data mining ap-
plication’s execution behavior (at runtime, 
these parameters specify different com-
mand-line options and can help create mul-
tiple simultaneous executions); and
data mining aspects to facilitate the applica-
tion’s fast discovery on the grid, including 
the domain-speci!c problem addressed; the 
data mining task, method, algorithm, and 
software; and the CRoss Industry Standard 
Process (CRISP) for the application’s data 
mining phase (www.crisp-dm.org).

The ADS is expressive enough to accommo-
date data mining applications from a wide range 
of platforms, technologies, application domains, 
and sectors, and has been tested with our eight 
different application domains.

Software and Hardware Resources Layer
Software resources include data resources, such 
as database and !le systems, and data mining 
applications. Typical hardware resources in-
clude processing units, primary and secondary 
storage devices, and computer clusters.

Globus Toolkit 4 Layer
The Globus Toolkit 4 (GT4) layer of the Data-
MiningGrid architecture provides core grid mid-
dleware functionality.5 GT4 is an open source 
toolkit for building grid systems provided by 
the Globus Alliance, which meets the require-
ments of the OGSA and implements the WSRF. 
It provides several critical components. GT4’s 
Monitoring and Discovery System 4 (MDS4) is 
essentially a system for storing and searching 
dynamically changing distributed XML docu-
ments that describe the grid’s software and 
hardware resources and their status. GT4’s data 
management components include grid !le trans-

•

•

•

•
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fer functionality (GridFTP, Reliable File Transfer 
[RTF] service) and data services (OGSA-DAI6). 
The GT4 data access and integration tools (OGSA-
DAI component) provide grid-enabled access to 
!les, relational databases, and XML databases. In 
addition to GT4 data management functions, we 
use the Java Commodity Grid Kit7 to let applica-
tion client machines, which don’t have a GridFTP 
server installation, manipulate and transfer !les 
to and from grid storage servers.

In addition, the DataMiningGrid makes ex-
tensive use of GT4’s execution management tools 
to handle the initiation, monitoring, manage-
ment, and coordination of remote computations. 
GT4 is used as a front end to either single ma-
chines or computational clusters, but it doesn’t 
implement a global scheduling functionality per 
se. GT4 provides a Web service version of the 
Grid Resource Allocation and Management (WS-
GRAM) interface, which is responsible for either 
the job’s execution on the local single machine 
or for forwarding and controlling execution of 
the local cluster manager, such as Condor, load 
sharing facility, and so on. To overcome the rel-
atively limited abilities of WS-GRAM to interact 
with local cluster managers, the DataMiningGrid 
enhances WS-GRAM’s execution adaptors by 
adding data transfer functionality to deal with 
recursive directory structures and by enabling 
the execution of Java applications, including the 
proper handling of JVM parameters, class path 
information, and so on.

DataMiningGrid High-Level Services
In the DataMiningGrid system, a job refers to a 
DataMiningGrid-enabled data mining applica-
tion (executables and associated libraries) that 
needs data !les (data from databases must be 
converted to !les before job submission) and 
appropriate computing resources to be execut-
ed, whereas multi-jobs are collections of such 
jobs (for example, parameter sweeps).

We based the resource broker service on the 
GridBus resource broker,8 which we modi!ed to 
adhere to the WSRF standard. (Hereafter, we re-
fer to our GridBus resource broker service simply 
as the resource broker.) It takes as input an in-
stance of the ADS, which speci!es a requested 
job or multi-job for execution. The resource bro-
ker then determines the list of available hardware 
resources from all administrative domains. From 
that list, it determines the best matched resources 
according to user requests and data mining ap-

plication requirements and then submits the job 
to the selected sites. In particular, the submission 
process includes data and data mining applica-
tion staging and setting up the environmental 
variables. Afterward, the resource broker moni-
tors jobs and performs data stage-out and clean-
up tasks when a job completes.

DataMiningGrid information services are 
designed to support the discovery, characteriza-
tion, and monitoring of various resources and 
services. These services create a registry via the 
underlying MDS4 to keep records of grid-enabled 
software resources (that is, ADS instances, which 
describe data mining applications) and to pro-
vide information on other resources (for exam-
ple, available clusters, storage and CPU capacity, 
operating systems, and so on). Users can search 
the registry for software resources according to 
ADS attributes, such as application names, ven-
dors, versions, functional descriptions, and so 
on. The resource broker also requires the registry 
to plan, allocate, and perform job execution. 

DataMiningGrid data services involve ex-
tensions to OGSA-DAI6 to provide data-mining-
speci!c functionality for data sets con!gured 
as OGSA-DAI data resources, such as XML and 
relational databases. These are accessed by a set 
of clients developed with the OGSA-DAI API6 
and can be used to integrate distributed data-
bases, perform data transformations, calculate 
data summaries, and format data on the "y to 
support different !le formats. File resources 
aren’t usually manipulated using OGSA-DAI but 
via other DataMiningGrid client components.

DataMiningGrid Client Components
We designed the DataMiningGrid system with 
three main user groups in mind: administra-
tors who manage the hardware and middle-
ware components; developers who build new 
grid-based applications; and end users who run 
the applications. For the latter groups, we en-
visioned two application client types: a work-
"ow editor for more complex and interactive 
applications, and hard-wired Web clients, which 
provide much simpler interactions. Web clients 
are intended to be easy to use and are designed 
speci!cally for domain-oriented end users with 
limited interest or knowledge of the underlying 
data mining and grid technology. The work"ow 
editor is based on Triana9 and is designed to fa-
cilitate !ne-grained user control of data mining 
applications; it supports "exible work"ow com-
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position, parameter settings, input and output 
data "ows, and so on. DataMiningGrid provides 
the work"ow components, which include those 
for remotely browsing and viewing !les, as well 
as transferring them to and from grid storage 
servers. Type-checking is applied to connec-
tions between work"ow components and to any 
parameters manually entered by users. 

Using the DataMiningGrid System
The DataMiningGrid’s architecture is best un-
derstood by viewing it in action, from the per-
spective of different types of users. Here, we 
outline all the necessary steps required to run a 
simple DataMiningGrid work"ow application.

Let’s start with an example in which it’s nec-
essary to grid-enable an existing data mining 

application. To do this, the application develop-
er uses a Web-based client called an application 
enabler. Using this client, the application devel-
oper uniformly speci!es the application’s prop-
erties and requirements and selects the actual 
software (executable and libraries) on the local 
machine. The application enabler then uploads 
the selected software to a grid storage server, 
creates a partially !lled new instance of the 
ADS, and registers it with the DataMiningGrid 
information services. Following this, anyone 
who has the necessary permissions can instant-
ly discover, con!gure, and run the data mining 
application in the grid environment. 

Before using the DataMiningGrid work"ow 
components, an end user must have installed 
Triana,9 the DataMiningGrid components, and a 

Related Work in Grid-Based Data Mining

Recently, various systems and approaches to grid-based data 
mining have appeared in the literature. We brie!y review 

those that are relevant to the DataMiningGrid system here.
GridMiner1 is designed to support data mining and online-an-

alytical processing in distributed computing environments. It pro-
vides a sophisticated distributed data warehousing functionality, 
implements some common data mining algorithms, including par-
allel versions, and also supports various text mining tasks. One of 
the major differences between GridMiner and DataMiningGrid is 
that the latter complies with the recent trend toward WSRF. 

Knowledge Grid (K-Grid)2 is a service-oriented system pro-
viding grid-based data mining tools and services. It can perform 
wide-ranging data mining and related tasks such as data man-
agement and knowledge representation. K-Grid wasn’t origi-
nally designed to support OGSA and WSRF, but developments 
are geared toward adding this support. Also, as of the time of 
this writing, K-Grid isn’t available as open source. Whereas the 
development of the DataMiningGrid was driven by the require-
ments of a diverse set of applications, a more conceptual view 
of the knowledge-discovery process has driven K-Grid’s design.

Anteater3 is a service-oriented architecture for data min-
ing that relies on Web services to achieve extensibility and in-
teroperability, and is freely available. However, unlike the other 
systems, it doesn’t support grid standards such as WSRF or 
OGSA. Moreover, Anteater requires data mining applications 
to be converted into a !lter-stream structure. Although this fea-
ture greatly increases scalability, the overhead involved is likely 
to limit the number of applications ported to this platform. 

The DataMiningGrid differs in comparison to these other 
systems because of

User friendliness. It supports different user interfaces, ac-
cording to the technological capabilities of its users, and 

•

we’ve kept the installation process as simple as possible. 
Extensibility. The Application Description Schema allows us-
ers to quickly grid-enable existing data mining applications. 
This is further supported by the work!ow editor, which 
dynamically con"gures its user interface according to the 
instantiated schema’s parameters.
Parameter sweeps. The Application Description Schema al-
lows the de"nition of multi-jobs that iterate over applica-
tion parameters, input "les, or directories. 
Diverse application support. We’ve implemented and tested 
a wide variety of applications from different domains. No 
modi"cation to the data mining application source code 
was necessary.
Standardization. The WSRF standard is relatively new and 
not yet supported by the GridMiner and Anteater systems.
Open source. The GridMiner and K-Grid systems aren’t 
freely available.

Overall, the DataMiningGrid provides a collection of fea-
tures that have been tested with a diverse set of applications. 
This makes it a unique and competitive contender for both 
grid-enabling existing applications and developing new ones.
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valid certi!cate. The end user’s part of the Data-
MiningGrid components consists of Java librar-
ies, which contain the client software used to 
manipulate data resources, select data mining 
applications, and orchestrate all the services 
needed to execute applications in the grid. 

Now the end user employs the work"ow edi-
tor to compose a simple work"ow. 

The !rst step involves selecting the data in 
one of three ways: !rst, via an OGSA-DAI cli-
ent that accesses the data services; second, by 
selecting local !les or directories to upload to a 
default GridFTP server; or third, by specifying 
!les or directories already present on a GridFTP 
server, such as a preceding run’s results. 

In the next step, the end user employs a 
work"ow component called an application ex-
plorer to browse the application registry for the 
previously grid-enabled data mining applica-
tions. When the user selects a data mining ap-
plication, the application explorer automatically 
queries the information services and receives 
the ADS instance of that particular application. 

Now the user interface in the work"ow editor, 
which we call an application control, is dynami-
cally con!gured according to the ADS instance’s 
speci!cations. As described earlier, this interface 
provides slots for the end user to instantiate !elds 
in the ADS — that is, for specifying mutable op-
tions, such as algorithm parameters, data inputs, 
and so on. By specifying an iteration over an al-
gorithm option, for example, the interface de!nes 
a range of numeric variables or a list of strings 
as parameters for a multi-job. Once the end user 
speci!es all execution options, the ADS instance 
is passed to the resource broker for execution. 
The end user now has little involvement in the 
process until the jobs have completed, except to 
optionally monitor their execution status.

The resource broker uses the information 
services to determine the available computa-
tional resources. It matches the ADS instance’s 
requirements to descriptions of available re-
sources and selects suitable resources for ex-
ecution accordingly. The resource broker uses 
RFT to transfer the executable (for example, a 
Java .jar !le or a C binary and its related li-
braries) and the uploaded data to each selected 
grid site, which has a GT4 WS-GRAM instal-
lation. WS-GRAM can then use its enhanced 
Condor adaptor to submit jobs to its local Con-
dor cluster, where they’re ultimately executed. 
The resource broker can execute a multi-job via 

several different WS-GRAM installations and 
Condor clusters, which may span different ad-
ministrative domains. Once the jobs complete, 
the resource broker will retrieve the job’s results 
from the WS-GRAM installation and transfer 
them with RFT to a prede!ned storage server. 

Finally, the end user browses and down-
loads the result !les using suitable work"ow 
components. 

It’s worth mentioning that the resource broker 
can “ship” data mining applications to targeted 
machines on the grid. The resource broker deter-
mines whether applications are shipped around 
the grid manually or automatically. This feature 
greatly adds to the system’s "exibility because 
no pre-installation of applications is required, 
which supports an important use case scenario: 
shipping algorithms to data as opposed to ship-
ping data to algorithms. This is extremely useful 
in many application scenarios we’ve investigat-
ed — for example, if data can’t be transferred 
because of its inherently distributed nature, its 
large volume, or for privacy issues.

Evaluation
We set up a comprehensive test bed spanning 
three European countries: the UK, Germany, 
and Slovenia. Each site provided at least one 
server with a GT4 installation (two in Germany) 
and heterogeneous Condor compute clusters, 
comprising up to 90, 5, and 40 available nodes, 
respectively, typically with CPU speeds of 1.4 
to 3 GHz, RAM of 521 Mbytes to 2 Gbytes, and 
using both Windows and Linux platforms. In 
 Ulster, we used a 64-node SGI Altix machine 
with CPU speed of 900 MHz and 128 Gbytes 
shared RAM. One machine in Germany cen-
trally hosted the resource broker and the in-
formation services. We validated the system by 
performing comprehensive data mining studies 
based on our main use case scenarios. 

One of our applications was topology dis-
covery for gene regulatory networks, which was 
CPU-intensive and based on a genetic algorithm 
implemented in Java. It was capable of using 
every available compute node in the test bed, 
and thus was able to achieve considerable per-
formance gains.

Analysis of protein folding simulations, on 
the other hand, was a data-intensive applica-
tion (data were in the range of 10 Gbytes to 
2 Tbytes), and involved distributed data ware-
houses of molecular simulations.10 We pro-
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cessed data in situ by shipping algorithms 
implemented in different languages to the 
data resources. Removing the need to down-
load large data volumes was important for this 
application, as was the need to quickly grid-
 enable new analysis algorithms.

In our medical application scenario, we in-
tegrated and queried distributed databases as if 
they were a single resource by using the data 
services. Then, we did cross-validation and 
classi!cation studies using grid-enabled algo-
rithms from the Weka data mining suite. This 
resulted in a signi!cant increase in productiv-
ity, as medical specialists could now easily per-
form data analyses.

Another scenario — customer relationships 
and quality management in the automotive in-
dustry — involved the distributed analysis of 
millions of documents by shipping preprocessing 
algorithms to the document repositories. Propri-
etary programs for document classi!cation and 
ontology learning were grid-enabled and com-
bined in complex work"ow applications. 

Our ecosystem modeling scenario involved a 
compute-intensive application based on an equa-
tion-discovery machine learning program writ-
ten in C and Python, which we restricted to run 
under Linux. Due to these requirements, only 
18 of the available nodes in the test bed could 
execute this application, yet the ecologists who 
weren’t familiar with grid technology reported 
that their applications returned results on aver-
age more than six times faster. They also appre-
ciated the ability to construct complex work"ows 
to easily execute complex and error-prone appli-
cations, which they previously did manually.

Now, let’s review a more detailed explana-
tion of a text mining application concerned 
with classi!cation. Typical text mining tasks 
applied to large and fast-evolving text corpora 
include text classi!cation facilitation, for ex-
ample, document redirection to suitable subject 
matter experts, emerging subject discovery, 
and keyword extraction. In this text classi!ca-
tion case study, we measured cross-validation 
runtimes on newswire data available from the 
Deutsche Presse-Agentur (DPA). 

We performed our experiments on 1,000 
documents in the DPA collection from October 
2004 (the source XML !le was 39 Mbytes) us-
ing several grid-enabled Java applications. Each 
tenfold cross-validation run began with a docu-
ment preprocessing stage — for example, to re-

move stop words, digits, and punctuation, and 
to convert the document collection to a binary 
format. In each cross-validation experiment, we 
performed parameter sweeps on the following: 
the importance weight for corpus terms, the 
term signi!cance threshold, and the text cat-
egory used for classi!cation. Jobs with differ-
ent settings for these three parameters ran in 
parallel, and each job split the data tenfold and 
performed training and classi!cation 10 times.

To gather performance information, we ran 
the experiments identically on a single ma-
chine, sequentially, and compared the results 
with parallel runs on the three Condor pools in 
the test bed. This led to the following results: 
speed-up depended on the input data location 
within each site because the algorithm is data 
intensive and required constant !le reading. For 
a central !le server with NFS and Gigabit Eth-
ernet, we measured a linear speed-up for up to 
!ve machines. For all the machines in the test 
bed, we could maintain linear speed-up if we 
mirrored input data on local disks within each 
site by specifying the proper Condor setting. In 
the case of local data, parallel executions had 
a quasi-linear speed-up during runtime due to 
grid overheads concerned with cluster con!gu-
rations, !le transfer, and scheduling.

I t seems obvious that emerging large-scale data 
mining applications will rely increasingly on 

distributed computing environments. To tackle 
these and other issues, we developed the Data-
MiningGrid system, and its main features in-
clude high performance, scalability, "exibility, 
ease of use, conceptual simplicity, compliance 
with emerging grid and data mining standards, 
and the use of mainstream grid and open tech-
nology. Our DataMiningGrid software is freely 
available under the Apache Open Source License 
V2.0 via SourceForge.net, including support-
ing documentation. Future developments with 
the DataMiningGrid are concerned with com-
plex applications that can’t be easily split into 
largely independent computational tasks. Such 
problems require sophisticated grid middleware 
technology that facilities ef!cient interprocess 
communication within grids. 
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