
G
ri

d
Co

m
pu

ti
ng

NOVEMBER/DECEMBER 2008 1089-7801/08/$25.00 © 2008 IEEE Published by the IEEE Computer Society 69

Digging Deep into
the Data Mine
with DataMiningGrid

Vlado Stankovski
and Jernej Trnkoczy
University of Ljubljana

Martin Swain
and Werner Dubitzky
University of Ulster

Valentin Kravtsov
and Assaf Schuster
Israel Institute of Technology

Thomas Niessen, Dennis
Wegener, and Michael May
Fraunhofer Institute for Intelligent
Analysis and Information Systems

Matthias Röhm
and Jürgen Franke
DaimlerChrysler

As modern data mining applications increase in complexity, so too do their
demands for resources. Grid computing is one of several emerging networked
computing paradigms promising to meet the requirements of heterogeneous,
large-scale, and distributed data mining applications. Despite this promise, there
are still too many issues to be resolved before grid technology is commonly
applied to large-scale data mining tasks. To address some of these issues, the
authors developed the DataMiningGrid system. It integrates a diverse set of
programs and application scenarios within a single framework, and features
scalability, !exible extensibility, sophisticated support for relevant standards
and different users.

D ata mining facilitates the auto-
mated extraction of potentially
useful information from large

volumes of data. Expanding data vol-
umes and the geographic distribution
of applications in many modern knowl-
edge sectors are fueling the need for
novel data mining solutions. Recent
trends that leverage network-based
infrastructures include distributed
data mining in peer-to-peer networks,
mobile and embedded devices, sen-
sor networks, and both parallel and
 privacy-preserving data mining.

Data mining in grid1 computing
environments represents a speci!c in-
carnation of distributed data mining
motivated by resource sharing via lo-
cal and wide area networks.2 Increased
performance, scalability, access, and re-

source exploitation are the key drivers
behind such endeavors. However, several
factors hamper large-scale data mining
applications on a grid. To begin with,
grid computing is relatively new, and
relevant standards and technologies are
still evolving. A plethora of data mining
technologies and a staggering number of
largely varying data mining application
scenarios further complicate matters.
Finally, data mining clients range from
highly domain-oriented end users to
technology-aware specialists. To the for-
mer, user transparency and ease-of-use
is paramount, whereas the latter group
needs control of certain detailed aspects
of data mining and grid technology.

In the DataMiningGrid project
(www.datamininggrid.org), we’ve
aimed to address the requirements of

Grid Computing

70 www.computer.org/internet/ IEEE INTERNET COMPUTING

modern data mining application scenarios — in
particular, those that involve sophisticated re-
source sharing.3

Use Cases and Requirements
In order to determine the requirements of a
generic grid system that will support demand-
ing data mining applications, we analyzed use
case scenarios from a wide range of application
 areas. These included ecological modeling, com-
putational biology and bioinformatics, customer
relationships and quality management in the au-
tomotive industry, performance monitoring and
fault diagnosis in network computing systems,
and analysis of distributed data in large-scale
medical studies. We faced key challenges inte-
grating the requirements of all these complex
application scenarios into a single framework:

Grid-enabling data mining applications
shouldn’t require modi!cation of source code.
We had to grid-enable numerous data min-
ing applications, ranging from the well-
known toolkit Weka, which runs on a Java

•

Virtual Machine (JVM), to proprietary
 machine-learning, text mining, and ontol-
ogy-learning applications that only execute
on speci!c platforms and use special librar-
ies. Bearing in mind the diversity of the ap-
plication scenarios, we couldn’t restrict the
system to speci!c data mining applications,
tools, techniques, or algorithms. It also had
to support various types of data sources, in-
cluding database management systems and
data sets stored in !le systems.
Ef!ciency, novel use, and improved resource
exploitation. Our grid-based data mining
environment had to offer one or more of the
following bene!ts: increased performance for
data mining applications (speed-up, through-
put), high scalability to serve more users and
more demanding applications, possibilities
for the creation of novel work"ow-based data
mining applications (for example, combin-
ing several data mining tasks to cover pre-
processing, processing, and postprocessing
stages), and improved exploitation of exist-
ing hardware and software resources.

•

DataMiningGrid clients

Grid middleware

Software resources

Hardware resources

Components developed
by DataMiningGrid

Data
manipulator

Application
explorer

Credentials
generator

A
pp

lic
at

io
n

en
ab

le
rMonitor

Application
control

Custom
units

Provenance
manager

Execution
manager

Resource
broker

Information
services

Data
services

Triana work!ow editor and manager

Web
application

Application
enabler

Web-based clients

DataMiningGrid client components

DataMiningGrid high-level services

Local
scheduler

Computer
clusters

Data mining applications (systems, tools, algorithms),
"les, directories, and database management systems

Processing units, networks,
primary and secondary storage

Software and hardware resources

Security

Common
runtime

Information
services
(MDS4)

Execution management

Globus Toolkit 4

Enhanced
Condor
adaptor

Enhanced
Fork

adaptor

Data management

RF
T

G
ri

dF
TP Data mining

activities

OGSA-DAI

Figure 1. The DataMiningGrid system architecture in four layers. Generally, components in higher layers
use the components organized in lower layers. The software and hardware resources layer sits at the
bottom, the Globus Toolkit 4 layer depicts some of the system’s core grid middleware components, the
high-level services layer shows components providing central DataMiningGrid services, and the client
components layer depicts the DataMiningGrid applications’ client-side components.

NOVEMBER/DECEMBER 2008 71

Into the Data Mine with DataMiningGrid

Usability. To ensure that the system was easy
to use, we had to hide the grid’s intricate
technological details from domain-oriented
users, but we also provided ways for techni-
cally knowledgeable users to de!ne, con!g-
ure, and parameterize application details.

The collected requirements implied various
complex system components, such as a work"ow
editor and manager, a resource manager, grid-
based data management, security mechanisms,
an execution management system, and so on. To
speed up development and reduce costs, we based
the system design on existing open technology.

DataMiningGrid System and Features
To address our requirements, the DataMiningGrid
system is designed according to three principles:
service-oriented architecture (SOA), standard-
ization, and open technology. SOA promotes the
sharing of geographically dispersed business
functions in a "exible way. We exploited SOA’s
main advantages, such as loose coupling, ease
and "exibility of reuse, scalability, interoper-
ability, and service abstraction from underlying
technologies.4 To ensure the DataMiningGrid
system’s seamless evolution, we made it support
two important distributed computing standards:
the Open Grid Service Architecture (OGSA, www.
globus.org/ogsa) and the Web Services Resource
Framework (WSRF, www.oasis-open.org).

Figure 1 depicts the DataMiningGrid system
architecture in four layers. Generally, compo-
nents in higher layers use the components orga-
nized in lower layers. The software and hardware
resources layer sits at the bottom, the Globus
Toolkit 4 layer depicts some of the system’s core
grid middleware components, the high-level ser-
vices layer shows components providing central
DataMiningGrid services, and the client compo-
nents layer depicts the DataMiningGrid applica-
tions’ client-side components.

Application Description Schema
A metadata schema de!nition, which we call
an Application Description Schema (ADS),
manages user interaction with system archi-
tecture components to grid-enable existing
data mining applications, and helps register
and search for software on the grid, match jobs
with suitable computational resources, and dy-
namically create user interfaces. Instances of
the ADS are XML documents at various levels

• of speci!cation, which are passed among sys-
tem components.

A fully speci!ed instance of the ADS contains

general information, that is, the application’s
narrative description, program vendor, ver-
sion, and so on;
implementation aspects, such as the ap-
plication’s operating system (Windows or
Linux), programming language, execut-
able !les and their storage locations, and
requirements, such as CPU architecture,
memory, and disk space;
parameters that de!ne the data mining ap-
plication’s execution behavior (at runtime,
these parameters specify different com-
mand-line options and can help create mul-
tiple simultaneous executions); and
data mining aspects to facilitate the applica-
tion’s fast discovery on the grid, including
the domain-speci!c problem addressed; the
data mining task, method, algorithm, and
software; and the CRoss Industry Standard
Process (CRISP) for the application’s data
mining phase (www.crisp-dm.org).

The ADS is expressive enough to accommo-
date data mining applications from a wide range
of platforms, technologies, application domains,
and sectors, and has been tested with our eight
different application domains.

Software and Hardware Resources Layer
Software resources include data resources, such
as database and !le systems, and data mining
applications. Typical hardware resources in-
clude processing units, primary and secondary
storage devices, and computer clusters.

Globus Toolkit 4 Layer
The Globus Toolkit 4 (GT4) layer of the Data-
MiningGrid architecture provides core grid mid-
dleware functionality.5 GT4 is an open source
toolkit for building grid systems provided by
the Globus Alliance, which meets the require-
ments of the OGSA and implements the WSRF.
It provides several critical components. GT4’s
Monitoring and Discovery System 4 (MDS4) is
essentially a system for storing and searching
dynamically changing distributed XML docu-
ments that describe the grid’s software and
hardware resources and their status. GT4’s data
management components include grid !le trans-

•

•

•

•

Grid Computing

72 www.computer.org/internet/ IEEE INTERNET COMPUTING

fer functionality (GridFTP, Reliable File Transfer
[RTF] service) and data services (OGSA-DAI6).
The GT4 data access and integration tools (OGSA-
DAI component) provide grid-enabled access to
!les, relational databases, and XML databases. In
addition to GT4 data management functions, we
use the Java Commodity Grid Kit7 to let applica-
tion client machines, which don’t have a GridFTP
server installation, manipulate and transfer !les
to and from grid storage servers.

In addition, the DataMiningGrid makes ex-
tensive use of GT4’s execution management tools
to handle the initiation, monitoring, manage-
ment, and coordination of remote computations.
GT4 is used as a front end to either single ma-
chines or computational clusters, but it doesn’t
implement a global scheduling functionality per
se. GT4 provides a Web service version of the
Grid Resource Allocation and Management (WS-
GRAM) interface, which is responsible for either
the job’s execution on the local single machine
or for forwarding and controlling execution of
the local cluster manager, such as Condor, load
sharing facility, and so on. To overcome the rel-
atively limited abilities of WS-GRAM to interact
with local cluster managers, the DataMiningGrid
enhances WS-GRAM’s execution adaptors by
adding data transfer functionality to deal with
recursive directory structures and by enabling
the execution of Java applications, including the
proper handling of JVM parameters, class path
information, and so on.

DataMiningGrid High-Level Services
In the DataMiningGrid system, a job refers to a
DataMiningGrid-enabled data mining applica-
tion (executables and associated libraries) that
needs data !les (data from databases must be
converted to !les before job submission) and
appropriate computing resources to be execut-
ed, whereas multi-jobs are collections of such
jobs (for example, parameter sweeps).

We based the resource broker service on the
GridBus resource broker,8 which we modi!ed to
adhere to the WSRF standard. (Hereafter, we re-
fer to our GridBus resource broker service simply
as the resource broker.) It takes as input an in-
stance of the ADS, which speci!es a requested
job or multi-job for execution. The resource bro-
ker then determines the list of available hardware
resources from all administrative domains. From
that list, it determines the best matched resources
according to user requests and data mining ap-

plication requirements and then submits the job
to the selected sites. In particular, the submission
process includes data and data mining applica-
tion staging and setting up the environmental
variables. Afterward, the resource broker moni-
tors jobs and performs data stage-out and clean-
up tasks when a job completes.

DataMiningGrid information services are
designed to support the discovery, characteriza-
tion, and monitoring of various resources and
services. These services create a registry via the
underlying MDS4 to keep records of grid-enabled
software resources (that is, ADS instances, which
describe data mining applications) and to pro-
vide information on other resources (for exam-
ple, available clusters, storage and CPU capacity,
operating systems, and so on). Users can search
the registry for software resources according to
ADS attributes, such as application names, ven-
dors, versions, functional descriptions, and so
on. The resource broker also requires the registry
to plan, allocate, and perform job execution.

DataMiningGrid data services involve ex-
tensions to OGSA-DAI6 to provide data-mining-
speci!c functionality for data sets con!gured
as OGSA-DAI data resources, such as XML and
relational databases. These are accessed by a set
of clients developed with the OGSA-DAI API6
and can be used to integrate distributed data-
bases, perform data transformations, calculate
data summaries, and format data on the "y to
support different !le formats. File resources
aren’t usually manipulated using OGSA-DAI but
via other DataMiningGrid client components.

DataMiningGrid Client Components
We designed the DataMiningGrid system with
three main user groups in mind: administra-
tors who manage the hardware and middle-
ware components; developers who build new
grid-based applications; and end users who run
the applications. For the latter groups, we en-
visioned two application client types: a work-
"ow editor for more complex and interactive
applications, and hard-wired Web clients, which
provide much simpler interactions. Web clients
are intended to be easy to use and are designed
speci!cally for domain-oriented end users with
limited interest or knowledge of the underlying
data mining and grid technology. The work"ow
editor is based on Triana9 and is designed to fa-
cilitate !ne-grained user control of data mining
applications; it supports "exible work"ow com-

NOVEMBER/DECEMBER 2008 73

Into the Data Mine with DataMiningGrid

position, parameter settings, input and output
data "ows, and so on. DataMiningGrid provides
the work"ow components, which include those
for remotely browsing and viewing !les, as well
as transferring them to and from grid storage
servers. Type-checking is applied to connec-
tions between work"ow components and to any
parameters manually entered by users.

Using the DataMiningGrid System
The DataMiningGrid’s architecture is best un-
derstood by viewing it in action, from the per-
spective of different types of users. Here, we
outline all the necessary steps required to run a
simple DataMiningGrid work"ow application.

Let’s start with an example in which it’s nec-
essary to grid-enable an existing data mining

application. To do this, the application develop-
er uses a Web-based client called an application
enabler. Using this client, the application devel-
oper uniformly speci!es the application’s prop-
erties and requirements and selects the actual
software (executable and libraries) on the local
machine. The application enabler then uploads
the selected software to a grid storage server,
creates a partially !lled new instance of the
ADS, and registers it with the DataMiningGrid
information services. Following this, anyone
who has the necessary permissions can instant-
ly discover, con!gure, and run the data mining
application in the grid environment.

Before using the DataMiningGrid work"ow
components, an end user must have installed
Triana,9 the DataMiningGrid components, and a

Related Work in Grid-Based Data Mining

Recently, various systems and approaches to grid-based data
mining have appeared in the literature. We brie!y review

those that are relevant to the DataMiningGrid system here.
GridMiner1 is designed to support data mining and online-an-

alytical processing in distributed computing environments. It pro-
vides a sophisticated distributed data warehousing functionality,
implements some common data mining algorithms, including par-
allel versions, and also supports various text mining tasks. One of
the major differences between GridMiner and DataMiningGrid is
that the latter complies with the recent trend toward WSRF.

Knowledge Grid (K-Grid)2 is a service-oriented system pro-
viding grid-based data mining tools and services. It can perform
wide-ranging data mining and related tasks such as data man-
agement and knowledge representation. K-Grid wasn’t origi-
nally designed to support OGSA and WSRF, but developments
are geared toward adding this support. Also, as of the time of
this writing, K-Grid isn’t available as open source. Whereas the
development of the DataMiningGrid was driven by the require-
ments of a diverse set of applications, a more conceptual view
of the knowledge-discovery process has driven K-Grid’s design.

Anteater3 is a service-oriented architecture for data min-
ing that relies on Web services to achieve extensibility and in-
teroperability, and is freely available. However, unlike the other
systems, it doesn’t support grid standards such as WSRF or
OGSA. Moreover, Anteater requires data mining applications
to be converted into a !lter-stream structure. Although this fea-
ture greatly increases scalability, the overhead involved is likely
to limit the number of applications ported to this platform.

The DataMiningGrid differs in comparison to these other
systems because of

User friendliness. It supports different user interfaces, ac-
cording to the technological capabilities of its users, and

•

we’ve kept the installation process as simple as possible.
Extensibility. The Application Description Schema allows us-
ers to quickly grid-enable existing data mining applications.
This is further supported by the work!ow editor, which
dynamically con"gures its user interface according to the
instantiated schema’s parameters.
Parameter sweeps. The Application Description Schema al-
lows the de"nition of multi-jobs that iterate over applica-
tion parameters, input "les, or directories.
Diverse application support. We’ve implemented and tested
a wide variety of applications from different domains. No
modi"cation to the data mining application source code
was necessary.
Standardization. The WSRF standard is relatively new and
not yet supported by the GridMiner and Anteater systems.
Open source. The GridMiner and K-Grid systems aren’t
freely available.

Overall, the DataMiningGrid provides a collection of fea-
tures that have been tested with a diverse set of applications.
This makes it a unique and competitive contender for both
grid-enabling existing applications and developing new ones.

References
P. Brezany, I. Janciak, and A.M. Tjoa, “GridMiner: A Fundamental Infrastruc-

ture for Building Intelligent Grid Systems,” Proc. 2005 IEEE/WIC/ACM Int’l

Conf. Web Intelligence (WI 05), IEEE Press, 2005, pp. 150–156.

A. Congiusta, D. Talia, and P. Trun"o, “Distributed Data Mining Services

Leveraging WSRF,” Future Generation Computer Systems, vol. 23, no. 1, 2007,

pp. 34–41.

D. Guedes, W. Meira, and R. Ferreira, “Anteater: A Service-Oriented Ar-

chitecture for High-Performance Data Mining,” IEEE Internet Computing, vol.

10, no. 4, 2006, pp. 36–43.

•

•

•

•

•

1.

2.

3.

Grid Computing

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

valid certi!cate. The end user’s part of the Data-
MiningGrid components consists of Java librar-
ies, which contain the client software used to
manipulate data resources, select data mining
applications, and orchestrate all the services
needed to execute applications in the grid.

Now the end user employs the work"ow edi-
tor to compose a simple work"ow.

The !rst step involves selecting the data in
one of three ways: !rst, via an OGSA-DAI cli-
ent that accesses the data services; second, by
selecting local !les or directories to upload to a
default GridFTP server; or third, by specifying
!les or directories already present on a GridFTP
server, such as a preceding run’s results.

In the next step, the end user employs a
work"ow component called an application ex-
plorer to browse the application registry for the
previously grid-enabled data mining applica-
tions. When the user selects a data mining ap-
plication, the application explorer automatically
queries the information services and receives
the ADS instance of that particular application.

Now the user interface in the work"ow editor,
which we call an application control, is dynami-
cally con!gured according to the ADS instance’s
speci!cations. As described earlier, this interface
provides slots for the end user to instantiate !elds
in the ADS — that is, for specifying mutable op-
tions, such as algorithm parameters, data inputs,
and so on. By specifying an iteration over an al-
gorithm option, for example, the interface de!nes
a range of numeric variables or a list of strings
as parameters for a multi-job. Once the end user
speci!es all execution options, the ADS instance
is passed to the resource broker for execution.
The end user now has little involvement in the
process until the jobs have completed, except to
optionally monitor their execution status.

The resource broker uses the information
services to determine the available computa-
tional resources. It matches the ADS instance’s
requirements to descriptions of available re-
sources and selects suitable resources for ex-
ecution accordingly. The resource broker uses
RFT to transfer the executable (for example, a
Java .jar !le or a C binary and its related li-
braries) and the uploaded data to each selected
grid site, which has a GT4 WS-GRAM instal-
lation. WS-GRAM can then use its enhanced
Condor adaptor to submit jobs to its local Con-
dor cluster, where they’re ultimately executed.
The resource broker can execute a multi-job via

several different WS-GRAM installations and
Condor clusters, which may span different ad-
ministrative domains. Once the jobs complete,
the resource broker will retrieve the job’s results
from the WS-GRAM installation and transfer
them with RFT to a prede!ned storage server.

Finally, the end user browses and down-
loads the result !les using suitable work"ow
components.

It’s worth mentioning that the resource broker
can “ship” data mining applications to targeted
machines on the grid. The resource broker deter-
mines whether applications are shipped around
the grid manually or automatically. This feature
greatly adds to the system’s "exibility because
no pre-installation of applications is required,
which supports an important use case scenario:
shipping algorithms to data as opposed to ship-
ping data to algorithms. This is extremely useful
in many application scenarios we’ve investigat-
ed — for example, if data can’t be transferred
because of its inherently distributed nature, its
large volume, or for privacy issues.

Evaluation
We set up a comprehensive test bed spanning
three European countries: the UK, Germany,
and Slovenia. Each site provided at least one
server with a GT4 installation (two in Germany)
and heterogeneous Condor compute clusters,
comprising up to 90, 5, and 40 available nodes,
respectively, typically with CPU speeds of 1.4
to 3 GHz, RAM of 521 Mbytes to 2 Gbytes, and
using both Windows and Linux platforms. In
 Ulster, we used a 64-node SGI Altix machine
with CPU speed of 900 MHz and 128 Gbytes
shared RAM. One machine in Germany cen-
trally hosted the resource broker and the in-
formation services. We validated the system by
performing comprehensive data mining studies
based on our main use case scenarios.

One of our applications was topology dis-
covery for gene regulatory networks, which was
CPU-intensive and based on a genetic algorithm
implemented in Java. It was capable of using
every available compute node in the test bed,
and thus was able to achieve considerable per-
formance gains.

Analysis of protein folding simulations, on
the other hand, was a data-intensive applica-
tion (data were in the range of 10 Gbytes to
2 Tbytes), and involved distributed data ware-
houses of molecular simulations.10 We pro-

NOVEMBER/DECEMBER 2008 75

Into the Data Mine with DataMiningGrid

cessed data in situ by shipping algorithms
implemented in different languages to the
data resources. Removing the need to down-
load large data volumes was important for this
application, as was the need to quickly grid-
 enable new analysis algorithms.

In our medical application scenario, we in-
tegrated and queried distributed databases as if
they were a single resource by using the data
services. Then, we did cross-validation and
classi!cation studies using grid-enabled algo-
rithms from the Weka data mining suite. This
resulted in a signi!cant increase in productiv-
ity, as medical specialists could now easily per-
form data analyses.

Another scenario — customer relationships
and quality management in the automotive in-
dustry — involved the distributed analysis of
millions of documents by shipping preprocessing
algorithms to the document repositories. Propri-
etary programs for document classi!cation and
ontology learning were grid-enabled and com-
bined in complex work"ow applications.

Our ecosystem modeling scenario involved a
compute-intensive application based on an equa-
tion-discovery machine learning program writ-
ten in C and Python, which we restricted to run
under Linux. Due to these requirements, only
18 of the available nodes in the test bed could
execute this application, yet the ecologists who
weren’t familiar with grid technology reported
that their applications returned results on aver-
age more than six times faster. They also appre-
ciated the ability to construct complex work"ows
to easily execute complex and error-prone appli-
cations, which they previously did manually.

Now, let’s review a more detailed explana-
tion of a text mining application concerned
with classi!cation. Typical text mining tasks
applied to large and fast-evolving text corpora
include text classi!cation facilitation, for ex-
ample, document redirection to suitable subject
matter experts, emerging subject discovery,
and keyword extraction. In this text classi!ca-
tion case study, we measured cross-validation
runtimes on newswire data available from the
Deutsche Presse-Agentur (DPA).

We performed our experiments on 1,000
documents in the DPA collection from October
2004 (the source XML !le was 39 Mbytes) us-
ing several grid-enabled Java applications. Each
tenfold cross-validation run began with a docu-
ment preprocessing stage — for example, to re-

move stop words, digits, and punctuation, and
to convert the document collection to a binary
format. In each cross-validation experiment, we
performed parameter sweeps on the following:
the importance weight for corpus terms, the
term signi!cance threshold, and the text cat-
egory used for classi!cation. Jobs with differ-
ent settings for these three parameters ran in
parallel, and each job split the data tenfold and
performed training and classi!cation 10 times.

To gather performance information, we ran
the experiments identically on a single ma-
chine, sequentially, and compared the results
with parallel runs on the three Condor pools in
the test bed. This led to the following results:
speed-up depended on the input data location
within each site because the algorithm is data
intensive and required constant !le reading. For
a central !le server with NFS and Gigabit Eth-
ernet, we measured a linear speed-up for up to
!ve machines. For all the machines in the test
bed, we could maintain linear speed-up if we
mirrored input data on local disks within each
site by specifying the proper Condor setting. In
the case of local data, parallel executions had
a quasi-linear speed-up during runtime due to
grid overheads concerned with cluster con!gu-
rations, !le transfer, and scheduling.

I t seems obvious that emerging large-scale data
mining applications will rely increasingly on

distributed computing environments. To tackle
these and other issues, we developed the Data-
MiningGrid system, and its main features in-
clude high performance, scalability, "exibility,
ease of use, conceptual simplicity, compliance
with emerging grid and data mining standards,
and the use of mainstream grid and open tech-
nology. Our DataMiningGrid software is freely
available under the Apache Open Source License
V2.0 via SourceForge.net, including support-
ing documentation. Future developments with
the DataMiningGrid are concerned with com-
plex applications that can’t be easily split into
largely independent computational tasks. Such
problems require sophisticated grid middleware
technology that facilities ef!cient interprocess
communication within grids.

Acknowledgments
European Commission FP6 grant DataMiningGrid, contract
number 004475, supported this work.

Grid Computing

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

References
I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy
of the Grid: Enabling Scalable Virtual Organizations,”
Int’l J. High Performance Computing Applications, vol.
15, no. 3, 2001, pp. 200–222.
A. Kumar, M.M. Kantardzic, and S. Madden, “Guest
Editors’ Introduction: Distributed Data Mining —
 Framework and Implementations,” IEEE Internet Com-
puting, vol. 10, no. 4, 2006, pp. 15–17.
V. Stankovski et al., “Grid-Enabling Data Mining Ap-
plications with DataMiningGrid: An Architectural
Perspective,” Future Generation Computing Systems,
vol. 24, no. 4, 2008, pp. 259–279.
P. Plaszczak and J.R. Wellner, Grid Computing: The
Savvy Manager’s Guide, Morgan Kaufmann, 2006.
B. Sotomayor and L. Childers, Globus Toolkit 4: Pro-
gramming Java Services, Morgan Kaufmann, 2006.
M. Antonioletti et al., “The Design and Implementation
of Grid Database Services in OGSA-DAI,” Concurrency
and Computation: Practice and Experience, vol. 17, no.
2–4, 2005, pp. 357–376.
G. Von Laszewski et al., “A Java Commodity Grid Kit,”
Concurrency and Computation: Practice and Experi-
ence, vol. 13, nos. 8-9, 2001, pp. 645–662.
S. Venugopal, R. Buyya, and L. Winton, “A Grid Service
Broker for Scheduling e-Science Applications on Glob-
al Data Grids,” Concurrency and Computation: Practice
and Experience, vol.18, no. 6, 2006, pp. 685–699.
G. Churches et al., “Programming Scienti!c and Dis-
tributed Work"ow with Triana Services,” Concurrency
and Computation: Practice and Experience, vol. 18, no.
10, 2005, pp. 1021–1037.
C. Silva et al., “P-Found: The Protein Folding and
Unfolding Simulation Repository,” Proc. 2006 IEEE
Symp. Computational Intelligence in Bioinformatics
and Computational Biology (CIBCB 06), IEEE Press,
2006, pp. 101–108.

Vlado Stankovski is a researcher in the Department of Civil
Informatics in the Faculty of Civil and Geodetic En-
gineering at the University of Ljubljana. His research
interests include semantic grid technology and data
mining. Contact him at vlado.stankovski@fgg.uni-lj.si.

Martin Swain is a research fellow at the University of Ul-
ster. His research interests are biophysics, systems bi-
ology, data management, and grid computing. Swain
has a PhD in intelligent computing systems and bio-
informatics from the University of Aberdeen. Contact
him at mt.swain@ulster.ac.uk.

Valentin Kravtsov is a PhD student at the Technion—Israel
Institute of Technology. His PhD research topics in-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

clude grid technologies and distributed and parallel
computing. Kravtsov has an MSc in software engi-
neering from the Technion. Contact him at svali_ds@
cs.technion.ac.il.

Thomas Niessen recently left Fraunhofer Institute for Intel-
ligent Analysis and Information Systems and is now a
software developer at Scopevisio AG. His research in-
terests include distributed computing, especially grid
technology, data mining, and databases. Niessen has
an MSc in computer science from the University of Ap-
plied Sciences Bonn-Rhein-Sieg in Bonn. Contact him
at thomas.niessen@gmx.net.

Dennis Wegener works as research fellow at the Fraun-
hofer Institute for Intelligent Analysis and Informa-
tion Systems, Department of Knowledge Discovery.
His research interests include data mining and grid
computing. Contact him at dennis.wegener@iais.
fraunhofer.de.

Matthias Röhm is a researcher with the text mining team at
DaimlerChrysler. His research interests are in distrib-
uted text mining. Contact him at uni-ulm.m.roehm@
daimlerchrysler.com.

Jernej Trnkoczy is a researcher in the Department of Civil
Informatics in the Faculty of Civil and Geodetic En-
gineering at the University of Ljubljana. His research
interests are in federated digital libraries. Contact him
at jernej.trnkoczy@fgg.uni-lj.si.

Michael May is head of the Department of Knowledge Dis-
covery at the Fraunhofer Institute for Intelligent Anal-
ysis and Information Systems. His research interests
are in data mining and knowledge discovery. Contact
him at michael.may@iais.fraunhofer.de.

Jürgen Franke is head of the text mining team at
 DaimlerChrysler. His research interests include text
mining and character recognition. Contact him at juer-
gen.franke@daimlerchrysler.com.

Assaf Schuster is head of the Distributed Systems Labo-
ratory at the Technion. His research interests include
distributed and parallel computing. Contact him at
 assaf@cs.technion.ac.il.

Werner Dubitzky occupies the chair of bioinformatics at the
University of Ulster. His research interests include bio-
informatics, systems biology, data and text mining, ar-
ti!cial intelligence, and grid technology. Contact him
at w.dubitzky@ulster.ac.uk.

