Globus Toolkit 5.0.0 Commandline Tools
Globus Toolkit 5.0.0 Commandline Tools

Abstract

You can also download a PDF version here\(^1\).
Table of Contents

I. GSI Commands .. 6
 - grid-cert-diagnostics ... 7
 - grid-cert-info .. 9
 - grid-cert-request .. 11
 - grid-default-ca ... 15
 - grid-change-pass-phrase .. 17
 - grid-proxy-init ... 18
 - grid-proxy-destroy ... 21
 - grid-proxy-info .. 22
 - grid-mapfile-add-entry ... 24
 - grid-mapfile-check-consistency ... 25
 - grid-mapfile-delete-entry ... 26

II. GridFTP Commands ... 27
 - globus-url-copy ... 28
 - globus-gridftp-server .. 40

III. Replica Location Service (RLS) Commands ... 50
 - globus-rls-admin ... 51
 - globus-rls-cli ... 53
 - globus-rls-server ... 57

IV. GRAM5 Commands .. 62
 - globusrun .. 63
 - globus-job-cancel .. 67
 - globus-job-clean ... 68
 - globus-job-get-output ... 69
 - globus-job-run ... 71
 - globus-job-status ... 74
 - globus-job-submit ... 76
 - globus-personal-gatekeeper ... 79
 - globus-gram-audit .. 81
 - globus-job-manager ... 82
 - globus-job-manager-event-generator .. 87

V. GSI-OpenSSH Commands ... ?
 - gsissh .. 89
 - gsiscp .. 90
 - gsisftp .. 91

Glossary ... 92
List of Figures

1. Effect of Parallel Streams in GridFTP ... 39
List of Tables

1. Command line options ... 17
2. Command line options ... 19
3. Command line options ... 21
4. Command line options ... 22
5. Print options .. 22
6. Validity options .. 23
7. Command line options ... 24
8. Command line options ... 25
9. Command line options ... 26
10. URL formats .. 30
11. Options for globus-rls-admin ... 52
12. Options for globus-rls-cli .. 53
13. Commands for globus-rls-cli ... 55
14. Options for globus-rls-server ... 60
GSI Commands
Name

grid-cert-diagnostics -- Print diagnostic information about certificates and keys

grid-cert-diagnostics [-h] [-p]

Description

The grid-cert-diagnostics command displays information about the current user's security environment, including information about security-related environment variables, security directory search path, personal key and certificates, and trusted certificates. It is intended to provide information to help diagnose problems using GSI security.

The full set of command-line options to grid-cert-diagnostics consists of:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Display a help message and exit</td>
</tr>
<tr>
<td>-p</td>
<td>Display information about the personal certificate and key that is the current user's default credential.</td>
</tr>
</tbody>
</table>

Examples

In this example, we see the default mode of checking the default security environment for the system, without processing the user's key and certificate. Note the user receives a warning about a cog.properties and about an expired CA certificate.

```bash
% grid-cert-diagnostics

Checking Environment Variables
==================================
Checking if X509_CERT_DIR is set... no
Checking if X509_USER_CERT is set... no
Checking if X509_USER_KEY is set... no
Checking if X509_USER_PROXY is set... no

Checking Security Directories
============================
Determining trusted cert path... /etc/grid-security/certificates
Checking for cog.properties... found
   WARNING: If the cog.properties file contains security properties, Java apps will ignore the security paths described in the GSI documentation

Checking trusted certificates...
=================================
Getting trusted certificate list...
Checking CA file /etc/grid-security/certificates/1c4f4c48.0... ok
Verifying certificate chain for "/etc/grid-security/certificates/1c3f2ca8.0"... ok
Checking CA file /etc/grid-security/certificates/9d8788eb.0... ok
Verifying certificate chain for "/etc/grid-security/certificates/9d8753eb.0"... failed
   globus_credential: Error verifying credential: Failed to verify credential
   globus_gsi_callback_module: Could not verify credential
   globus_gsi_callback_module: The certificate has expired:
```
Credential with subject: /DC=org/DC=example/OU=grid/CN=CA has expired.

In this example, we show a user with a mismatched private key and certificate:

```bash
% grid-cert-diagnostics -p
```

Checking Environment Variables
==============================
Checking if X509_CERT_DIR is set... no
Checking if X509_USER_CERT is set... no
Checking if X509_USER_KEY is set... no
Checking if X509_USER_PROXY is set... no

Checking Security Directories
=============================
Determining trusted cert path... /etc/grid-security/certificates
Checking for cog.properties... not found

Checking Default Credentials
=============================
Determining certificate and key file names... ok
Certificate Path: "/home/juser/.globus/usercert.pem"
Key Path: "/home/juser/.globus/userkey.pem"
Reading certificate... ok
Reading private key... ok
Checking Certificate Subject... "/O=Grid/OU=Example/OU=User/CN=Joe User"
Checking cert... ok
Checking key... ok
Checking that certificate contains an RSA key... ok
Checking that private key is an RSA key... ok
Checking that public and private keys have the same modulus... failed
Private key modulus: D294849E37F048C3B5ACEEF2CCDF97D88B679C361E29D5CB5 219C3E948F3E530CFC609489759E1D751F0ACFF0515A614276A0F4C11A57D92D7165B8 FA64E3140155DE448D45C182F4657DA13EDA288423F5B9D169DFF3822EFD81EB2E6403 CE3CB4CCF96B65284D92592BB1673A18354DA241B9AFD7F494E54F63A93E15DCAE2
Public key modulus : C002C7B329B13BFA87BACF214EACE3DC3D490165ACEB791790 600708C544175D9193C9BAC5AED03B7CB49BB6AE6D29B7E635FAC751E9A61CEA98022 6F1B63002902D6623A319E4682E7BBFB0968DCE962CF218AAD95FAAD6A0BA5C42AA9A9F 7FDD32B37C6E2B2FF0E311310AA55FFB9EAFDF5B995C7D9EEAD8D5D81F3531E0AE5
Certificate and and private key don't match
Name

grid-cert-info -- Display certificate information

grid-cert-info [-help] [-version] [-file CERTIFICATE-FI-

Description

The grid-cert-info displays information from a user's credential, or from any X.509 certificate if the -file CERTIF-
ICATE-FI-LENAME is used. By default, a text representation of the entire certificate is displayed. If more than one
display option is present on the command line, the output is generated in the order the options occur on the command
line.

The following search order is used to locate the default certificate:

- $X509_USER_CERT
- $HOME/.globus/usercert.pem
- $HOME/.globus/usercred.p12

If the certificate is encoded in pkcs12, grid-cert-info will prompt for the password used to protect the .p12 file.

The full set of command-line options to grid-cert-info is:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help</td>
<td>Print help information and exit</td>
</tr>
<tr>
<td>-version</td>
<td>Print version information and exit</td>
</tr>
<tr>
<td>-file</td>
<td>Read credential from CERTIFICATE-FI-LENAME instead of the default location.</td>
</tr>
<tr>
<td>-all</td>
<td>Print all information from the certificate. This is the default unless any of the following options are given.</td>
</tr>
<tr>
<td>-subject</td>
<td>Print the subject name of the certificate.</td>
</tr>
<tr>
<td>-issuer</td>
<td>Print the subject name of the issuer of the certificate. This is the subject name of the Certificate Authority which signed the certificate.</td>
</tr>
<tr>
<td>-issuerhash</td>
<td>Print the hash of the name of the issuer of the certificate. This is the hash of the Certificate Authority which signed the certificate.</td>
</tr>
<tr>
<td>-startdate</td>
<td>Print the date and time from which the certificate is valid</td>
</tr>
<tr>
<td>-enddate</td>
<td>Print the date and time when the certificate expires.</td>
</tr>
</tbody>
</table>

Examples

Print out the date range when a certificate is valid:

% grid-cert-info -startdate -enddate

Oct 29 13:09:42 2007 GMT
Oct 28 13:09:42 2008 GMT
Note that in this example, the start date is printed first, based on the order of the command-line options.

Limitations

The `-issuerhash` fails with some versions of OpenSSL.
Name

grid-cert-request -- Create a certificate request

```bash
[-commonname NAME] [-service SERVICE] [-host FQDN] [-dns FQDN, ...] [-ip IP-ADDRESS, ...] [-interactive]
[-dir DIRECTORY] [-prefix PREFIX] [-ca HASH] [-nopw]
```

Description

`grid-cert-request` generates a public/private key pair an X.509 certificate request containing the public key and a subject name. By default, it generates a request for a user certificate for the invoking user. `grid-cert-request` can also be used to create host or service certificates based on command-line options. At least one Certificate Authority must be configured to use with the Globus Toolkit in order for this command to succeed.

Complete set of options to `grid-cert-request` is:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-help</code></td>
<td>Print help information and exit</td>
</tr>
<tr>
<td><code>-version</code></td>
<td>Print version information and exit</td>
</tr>
<tr>
<td><code>-verbose</code></td>
<td>Don't clear screen after running OpenSSL</td>
</tr>
<tr>
<td><code>-force</code></td>
<td>Overwrite an existing certificate request if present.</td>
</tr>
<tr>
<td><code>-commonname NAME</code></td>
<td>Construct a subject name with <code>NAME</code> as the final name component. By default, the subject name is inferred from the output of the <code>finger</code> program. If that fails, <code>grid-cert-request</code> will prompt of a name.</td>
</tr>
<tr>
<td><code>-service SERVICE</code></td>
<td>Construct a subject name with the common name constructed from the <code>SERVICE</code> name and the hostname joined by the <code>/</code> character. The <code>-service</code> requires that the <code>-host</code> option also be used. The private key created for a service certificate request is not encrypted.</td>
</tr>
<tr>
<td><code>-host FQDN</code></td>
<td>Construct a subject name with <code>FQDN</code> as the name of the host. This must be a fully-qualified name in dotted string notation (e.g. grid.example.org). If no service is specified by the <code>-service</code> option, the subject name will be <code>host/FQDN</code>. The private key created for a host certificate request is not encrypted. By default the host certificate request and key are created in <code>/etc/grid-security</code>.</td>
</tr>
<tr>
<td><code>-dns FQDN,...</code></td>
<td>Add a subjectAltName extension to the certificate request containing one or more DNS names separated by the comma (,) character. These names may contain the wildcard character (*). Globus Toolkit 4.2.1 and later will process the subjectAltName extension if present when performing mutual authentication with a service.</td>
</tr>
<tr>
<td><code>-ip IP-ADDRESS,...</code></td>
<td>Add a subjectAltName extension to the certificate request containing one or more IP address values separated by the comma (,) character. Globus Toolkit 4.2.1 and later will process the subjectAltName extension if present when performing mutual authentication with a service when the client is presented with an IP address as input.</td>
</tr>
<tr>
<td><code>-interactive</code></td>
<td>Interactively prompt for the components of the certificate subject name.</td>
</tr>
<tr>
<td><code>-dir DIRECTORY</code></td>
<td>Write the certificate request and key to <code>DIRECTORY</code>, creating it if the directory does not exist. By default, the certificate request and key are placed in <code>$HOME/.globus</code>.</td>
</tr>
<tr>
<td><code>-prefix PREFIX</code></td>
<td>Prepend the string <code>PREFIX</code> to the certificate, key, and request filenames. The default prefix is <code>user</code> for user certificates and <code>host</code> for host certificates.</td>
</tr>
<tr>
<td><code>-ca HASH</code></td>
<td>Choose a non-default Certificate Authority configuration to construct the certificate request. If <code>HASH</code> is present on the command line, then <code>grid-cert-request</code> will use</td>
</tr>
</tbody>
</table>
that certificate authority's configuration. Otherwise, it will prompt the user for a CA
to choose from the list of configured CAs.

Create a private key without a password. This may be a security risk if the file per-
missions of the private key are not carefully maintained.

Examples

Request a user certificate:

% grid-cert-request

A certificate request and private key is being created.
You will be asked to enter a PEM pass phrase.
This pass phrase is akin to your account password,
and is used to protect your key file.
If you forget your pass phrase, you will need to
obtain a new certificate.

Generating a 1024 bit RSA private key
........................+++++
........+++++
writing new private key to '/home/juser/.globus/userkey.pem'
Enter PEM pass phrase:

A private key and a certificate request has been generated with the subject:
/O=Grid/OU=Example/OU=User/CN=Joe User

If the CN=Joe User is not appropriate, rerun this
script with the -force -cn "Common Name" options.

Your private key is stored in /home/juser/.globus/userkey.pem
Your request is stored in /home/juser/.globus/usercert_request.pem

Please e-mail the request to the Globus Certificate Service ca@grid.example.org
You may use a command similar to the following:

 cat /home/juser/.globus/usercert_request.pem | mail ca@grid.example.org

Only use the above if this machine can send AND receive e-mail. if not, please
mail using some other method.

Your certificate will be mailed to you within two working days.
If you receive no response, contact Globus Certificate Service at ca@grid.example.org

Request a host certificate, putting the request and key files in the $HOME/.globus/host directory.

% grid-cert-request -host grid.example.org -dir $HOME/.globus/host
A private host key and a certificate request has been generated with the subject:

/O=Grid/OU=Example/OU=User/CN=host/grid.example.org

--

The private key is stored in /tmp/examplegrid/hostkey.pem
The request is stored in /tmp/examplegrid/hostcert_request.pem

Please e-mail the request to the Globus Certificate Service ca@grid.example.org
You may use a command similar to the following:

 cat /tmp/examplegrid/hostcert_request.pem | mail ca@grid.example.org

Only use the above if this machine can send AND receive e-mail. If not, please mail using some other method.

Your certificate will be mailed to you within two working days.
If you receive no response, contact Globus Certificate Service at ca@grid.example.org

Request a host certificate with subjectAltName extensions. This certificate is valid for hosts with DNS names execution.example.org and transfer.example.org.

% grid-cert-request -host grid.example.org -dns execution.example.org,transfer.example.org

A private host key and a certificate request has been generated with the subject:

/O=Grid/OU=Example/OU=User/CN=host/grid.example.org

--

The private key is stored in /tmp/examplegrid/hostkey.pem
The request is stored in /tmp/examplegrid/hostcert_request.pem

Please e-mail the request to the Globus Certificate Service ca@grid.example.org
You may use a command similar to the following:

 cat /tmp/examplegrid/hostcert_request.pem | mail ca@grid.example.org

Only use the above if this machine can send AND receive e-mail. If not, please mail using some other method.

Your certificate will be mailed to you within two working days.
If you receive no response, contact Globus Certificate Service at ca@grid.example.org
Limitations

Only supports PEM-encoded keys, certificates and certificate requests.
Name

grid-default-ca -- Set the default CA to use for certificate requests

grid-default-ca [-help] [-list] [-ca CA-HASH] [-dir SECURITY-DIRECTORY]

Description

The **grid-default-ca** program sets the default CA used by **grid-cert-request**. Based on the default CA choice, **grid-cert-request** will create a certificate request that matches the CA's naming policies.

If the **-ca** option is not provided on the command-line, **grid-default-ca** will display a list of available Certificate Authorities and prompt the user to choose one.

The full set of command-line options to **grid-default-ca** are:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help</td>
<td>Display a help message and exit</td>
</tr>
<tr>
<td>-list</td>
<td>List the available CAs but do not alter the default</td>
</tr>
<tr>
<td>-ca CA-HASH</td>
<td>Select the default CA whose subject name hash matches CA-HASH.</td>
</tr>
<tr>
<td>-dir SECURITY-DIRECTORY</td>
<td>Search SECURITY-DIRECTORY for additional CA certificates.</td>
</tr>
</tbody>
</table>

Examples

Show what certificate authorities are in the trusted cert directory:

```
% grid-default-ca -list
```

The available CA configurations installed on this host are:

 Directory: /etc/grid-security/certificates

1) 1c3f2ca8 - /DC=org/DC=DOEGrids/OU=Certificate Authorities/CN=DOEGrids CA 1
2) 3d8e6ce8 - /O=Grid/CN=Example CA
3) 6349a761 - /O=DOE Science Grid/OU=Certificate Authorities/CN=Certificate Manager
4) b38b4d8c - /C=US/O=Globus Alliance/CN=Globus Certificate Service

The default CA is: /C=US/O=Globus Alliance/CN=Globus Certificate Service

 Location: /etc/grid-security/certificates/b38b4d8c.0

Change the default CA to be **DOEGrids CA 1**:

```
% grid-default-ca
```

The available CA configurations installed on this host are:

 Directory: /etc/grid-security/certificates
grid-default-ca

1) 1c3f2ca8 - /DC=org/DC=DOEGrids/OU=Certificate Authorities/CN=DOEGrids CA 1
2) 3d8e6ce8 - /O=Grid/CN=Example CA
3) 6349a761 - /O=DOE Science Grid/OU=Certificate Authorities/CN=Certificate Manager
4) b38b4d8c - /C=US/O=Globus Alliance/CN=Globus Certificate Service

The default CA is: /C=US/O=Globus Alliance/CN=Globus Certificate Service
 Location: /etc/grid-security/certificates/b38b4d8c.0

Enter the index number of the CA to set as the default [q to quit]: 1

setting the default CA to: /DC=org/DC=DOEGrids/OU=Certificate Authorities/CN=DOEGrids CA 1

linking /etc/grid-security/certificates/grid-security.conf.1c3f2ca8 to
 /etc/grid-security/grid-security.conf

linking /etc/grid-security/certificates/globus-host-ssl.conf.1c3f2ca8 to
 /etc/grid-security/globus-host-ssl.conf

linking /etc/grid-security/certificates/globus-user-ssl.conf.1c3f2ca8 to
 /etc/grid-security/globus-user-ssl.conf

...done.

Limitations

Displays all CAs in the output, even those where the globus-user-ssl.conf and globus-host-ssl.conf files are not installed in the trusted certificate directory. If one of those is chosen, grid-default-ca displays an error and exits.
Name
grid-change-pass-phrase -- Change the pass phrase on a private key

grid-change-pass-phrase

Tool description
grid-change-pass-phrase allows one to change the passphrase that protects the private key.

Command syntax
grid-change-pass-phrase [-help] [-version] [-file private_key_file]

Changes the passphrase that protects the private key. Note that this command will work even if the original key is not password protected. If the -file argument is not given, the default location of the file containing the private key is assumed:

- The location pointed to by X509_USER_KEY
- If X509_USER_KEY not set, $HOME/globus/userkey.pem

Options
Table 1. Command line options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>help, -usage</td>
<td>Displays usage.</td>
</tr>
<tr>
<td>-version</td>
<td>Displays version.</td>
</tr>
<tr>
<td>-file location</td>
<td>Changes the passphrase on the key stored in the file at the non-standard location 'location'.</td>
</tr>
</tbody>
</table>

Limitations
Nothing applicable
Name

grid-proxy-init -- Generate a new proxy certificate

grid-proxy-init

Tool description

grid-proxy-init generates X.509 proxy certificates.

By default, this command generates RFC 3820 Proxy Certificates.

There are also options available for generating other types of proxy certificates, including limited, independent and legacy. For more information about proxy certificate types and their compatibility in GT, see http://dev.globus.org/wiki/Security/ProxyCertTypes.

Command syntax

grid-proxy-init [-help][-pwstdin][-limited][-valid H:M] ...

1 http://www.ietf.org/rfc/rfc3820.txt
Options

Table 2. Command line options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help, -usage</td>
<td>Displays usage.</td>
</tr>
<tr>
<td>-version</td>
<td>Displays version.</td>
</tr>
<tr>
<td>-debug</td>
<td>Enables extra debug output.</td>
</tr>
<tr>
<td>-q</td>
<td>Quiet mode, minimal output.</td>
</tr>
<tr>
<td>-verify</td>
<td>Verifies the certificate to make the proxy for.</td>
</tr>
<tr>
<td>-pstdin</td>
<td>Allows passphrase from stdin.</td>
</tr>
<tr>
<td>-limited</td>
<td>Creates a limited globus proxy.</td>
</tr>
<tr>
<td>-independent</td>
<td>Creates an independent globus proxy.</td>
</tr>
<tr>
<td>-draft</td>
<td>Creates a draft (GSI-3) proxy.</td>
</tr>
<tr>
<td>-old</td>
<td>Creates a legacy globus proxy.</td>
</tr>
<tr>
<td>-valid <h:m></td>
<td>Proxy is valid for h hours and m minutes (default:12:00).</td>
</tr>
<tr>
<td>-hours <hours></td>
<td>Deprecated support of hours option.</td>
</tr>
<tr>
<td>-bits <bits></td>
<td>Number of bits in key {512</td>
</tr>
<tr>
<td>-policy <policyfile></td>
<td>File containing the policy to store in the ProxyCertInfo extension.</td>
</tr>
<tr>
<td>-pl <oid>, -policy-language <oid></td>
<td>OID string for the policy language used in the policy file.</td>
</tr>
<tr>
<td>-path-length <l></td>
<td>Allows a chain of at most 1 proxies to be generated from this one.</td>
</tr>
<tr>
<td>-cert <certfile></td>
<td>Non-standard location of user certificate.</td>
</tr>
<tr>
<td>-key <keyfile></td>
<td>Non-standard location of user key.</td>
</tr>
<tr>
<td>-certdir <certdir></td>
<td>Non-standard location of trusted cert directory.</td>
</tr>
<tr>
<td>-out <proxyfile></td>
<td>Non-standard location of new proxy cert.</td>
</tr>
</tbody>
</table>

Creating a Proxy Certificate

Proxies are certificates signed by the user, or by another proxy, that do not require a password to submit a job. They are intended for short-term use, when the user is submitting many jobs and cannot be troubled to repeat his password for every job.

The subject of a proxy certificate is the same as the subject of the certificate that signed it, with /CN=proxy added to the name. The gatekeeper will accept any job requests submitted by the user, as well as any proxies he has created.

Proxies provide a convenient alternative to constantly entering passwords, but are also less secure than the user’s normal security credential. Therefore, they should always be user-readable only, and should be deleted after they are no longer needed (or after they expire).

To create a proxy with the default expiration (12 hours), run the grid-proxy-init program. For example:

```
% grid-proxy-init
```

The grid-proxy-init program can also take arguments to specify the expiration and proxy key length. For example:

```
% grid-proxy-init -hours 8 -bits 512
```
Limitations

Nothing applicable
Name
grid-proxy-destroy -- Destroy the current proxy certificate (previously created with grid-proxy-init)

grid-proxy-destroy

Tool description
grid-proxy-destroy removes X.509 proxy certificates.

Command syntax

Options

Table 3. Command line options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help, -usage</td>
<td>Displays usage.</td>
</tr>
<tr>
<td>-version</td>
<td>Displays version.</td>
</tr>
<tr>
<td>-debug</td>
<td>Displays debugging information.</td>
</tr>
<tr>
<td>-dryrun</td>
<td>Prints what files would have been destroyed.</td>
</tr>
<tr>
<td>-default</td>
<td>Destroys file at default proxy location.</td>
</tr>
<tr>
<td>-all</td>
<td>Destroys any user (default) and delegated proxies that are found.</td>
</tr>
<tr>
<td>--</td>
<td>Ends processing of options.</td>
</tr>
<tr>
<td>file1 file2 ...</td>
<td>Destroys the files listed.</td>
</tr>
</tbody>
</table>

Limitations
Nothing applicable
Name
grid-proxy-info -- Display information obtained from a proxy certificate

grid-proxy-info

Tool description
grid-proxy-info extracts information from X.509 proxy certificates.

Command syntax
grid-proxy-info [-help][[-f proxyfile][-subject][...][-e [-H][B]]]

Options

Table 4. Command line options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help, -usage</td>
<td>Displays usage.</td>
</tr>
<tr>
<td>-version</td>
<td>Displays version.</td>
</tr>
<tr>
<td>-debug</td>
<td>Displays debugging output.</td>
</tr>
<tr>
<td>-file <proxyfile> (-f)</td>
<td>Non-standard location of proxy.</td>
</tr>
<tr>
<td>[printoptions]</td>
<td>See Table 5, "Print options".</td>
</tr>
<tr>
<td>-exists [options] (-e)</td>
<td>Determine whether a valid proxy exists. options may contain any validation options described below. If a proxy exists, and meets any criteria defined by the validity options, then grid-proxy-info will terminate with the exit code 0. Otherwise, grid-proxy-info will terminate with the exit code 1. If no validity options are specified, the program will terminate with 0 if a currently-valid proxy file exists.</td>
</tr>
</tbody>
</table>

Table 5. Print options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-subject (-s)</td>
<td>Distinguished name (DN) of the subject.</td>
</tr>
<tr>
<td>-issuer (-i)</td>
<td>DN of the issuer (certificate signer).</td>
</tr>
<tr>
<td>-identity</td>
<td>DN of the identity represented by the proxy.</td>
</tr>
<tr>
<td>-type</td>
<td>Type of proxy (full or limited).</td>
</tr>
<tr>
<td>-timeleft</td>
<td>Time (in seconds) until proxy expires.</td>
</tr>
<tr>
<td>-strength</td>
<td>Key size (in bits).</td>
</tr>
<tr>
<td>-all</td>
<td>All above options in a human readable format.</td>
</tr>
<tr>
<td>-text</td>
<td>All of the certificate.</td>
</tr>
<tr>
<td>-path</td>
<td>Pathname of the proxy file.</td>
</tr>
</tbody>
</table>
Table 6. Validity options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-valid H:M (-v)</td>
<td>Time requirement for the proxy to be valid.</td>
</tr>
<tr>
<td>-hours H (-h)</td>
<td>Time requirement for the proxy to be valid (deprecated, use -valid instead).</td>
</tr>
<tr>
<td>-bits B (-b)</td>
<td>Strength requirement for the proxy to be valid.</td>
</tr>
</tbody>
</table>

Limitations

Nothing applicable
Name

grid-mapfile-add-entry -- Add an entry to a grid map file

grid-mapfile-add-entry

Tool description

grid-mapfile-add-entry adds entries to grid map files.

Command syntax

grid-mapfile-add-entry -dn DN -ln LN [-help] [-d] [-f mapfile FILE]

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help, -usage</td>
<td>Displays help.</td>
</tr>
<tr>
<td>-version</td>
<td>Displays version.</td>
</tr>
<tr>
<td>-dn DN</td>
<td>Distinguished Name (DN) to add. Remember to quote the DN if it contains spaces.</td>
</tr>
<tr>
<td>-ln LN1 [LN2...]</td>
<td>Local login name(s) to which the DN is mapped.</td>
</tr>
<tr>
<td>-dryrun, -d</td>
<td>Shows what would be done but will not add the entry.</td>
</tr>
<tr>
<td>-mapfile FILE, -f FILE</td>
<td>Path of the grid map file to be used.</td>
</tr>
</tbody>
</table>

Limitations

Nothing applicable.
Name

grid-mapfile-check-consistency -- Check the internal consistency of a grid map file

grid-mapfile-check-consistency

Tool description

grid-mapfile-check-consistency checks that the given grid map file conforms to the expected format as well as checking for common subject name problems.

Command syntax

grid-mapfile-check-consistency [-help] [-mapfile FILE]

Options:

Table 8. Command line options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help, -usage</td>
<td>Displays help.</td>
</tr>
<tr>
<td>-version</td>
<td>Displays version.</td>
</tr>
<tr>
<td>-mapfile FILE, -f FILE</td>
<td>Path of the grid map file to be used.</td>
</tr>
</tbody>
</table>

Limitations

Nothing applicable
Name

grid-mapfile-delete-entry -- Delete an entry from a grid map file

grid-mapfile-delete-entry

Tool description

grid-mapfile-delete entry deletes a grid map file entry from the given file.

Command syntax

Options:

Table 9. Command line options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help, -usage</td>
<td>Displays help.</td>
</tr>
<tr>
<td>-version</td>
<td>Displays version.</td>
</tr>
<tr>
<td>-dn <DN></td>
<td>Distinguished Name (DN) to delete.</td>
</tr>
<tr>
<td>-ln <local name></td>
<td>Local Login Name (LN) to delete.</td>
</tr>
<tr>
<td>-dryrun, -d</td>
<td>Shows what would be done but will not delete the entry.</td>
</tr>
<tr>
<td>-mapfile file, -f file</td>
<td>Path of the grid map file to be used.</td>
</tr>
</tbody>
</table>

Limitations

Nothing applicable.
GridFTP Commands
Name

globus-url-copy -- Multi-protocol data movement

globus-url-copy

Tool description

globus-url-copy is a scriptable command line tool that can do multi-protocol data movement. It supports gsiftp:// (GridFTP), ftp://, http://, https://, and file:/// protocol specifiers in the URL. For GridFTP, globus-url-copy supports all implemented functionality. Versions from GT 3.2 and later support file globbing and directory moves.

- Before you begin
- Command syntax
- Command line options
 - Informational options
 - Utility options
 - Reliability options
 - Performance options
 - Security-related options
- Default usage
- MODES in GridFTP
- If you run a GridFTP server by hand
- How do I choose a value for the TCP buffer size (-tcp-bs) option?
- How do I choose a value for the parallelism (-p) option?
- Limitations
- Interactive clients for GridFTP

Before you begin

⚠️ Important

To use gsiftp:// and https:// protocols in globus-url-copy, you must have a certificate. However, you may use ftp://, http:// or sshftp:// protocols without a certificate.

1. First, as with all things Grid, you must have a valid proxy certificate to run globus-url-copy in certain protocols (gsiftp:// and https://, as noted above). If you are using ftp://, http:// or sshftp:// protocols, you may skip ahead to Command syntax.

 If you do not have a certificate, you must obtain one.
If you are doing this for testing in your own environment, the SimpleCA provided with the Globus Toolkit should suffice.

If not, you must contact the Virtual Organization (VO) with which you are associated to find out whom to ask for a certificate.

One common source is the DOE Science Grid CA, although you must confirm whether or not the resources you wish to access will accept their certificates.

Instructions for proper installation of the certificate should be provided from the source of the certificate.

Please note when your certificates expire; they will need to be renewed or you may lose access to your resources.

2. Now that you have a certificate, you must generate a temporary proxy. Do this by running:

 grid-proxy-init

 Further documentation for grid-proxy-init can be found here.

3. You are now ready to use globus-url-copy! See the following sections for syntax and command line options and other considerations.

Command syntax

The basic syntax for globus-url-copy is:

```
globus-url-copy [optional command line switches] Source_URL Destination_URL
```

where:

<table>
<thead>
<tr>
<th>[optional command line switches]</th>
<th>See Command line options below for a list of available options.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source_URL</td>
<td>Specifies the original URL of the file(s) to be copied.</td>
</tr>
<tr>
<td></td>
<td>If this is a directory, all files within that directory will be copied.</td>
</tr>
<tr>
<td>Destination_URL</td>
<td>Specifies the URL where you want to copy the files.</td>
</tr>
<tr>
<td></td>
<td>If you want to copy multiple files, this must be a directory.</td>
</tr>
</tbody>
</table>

⚠️ **Note**

Any url specifying a directory must end with `/`.

URL prefixes

Versions from GT 3.2 and later support the following URL prefixes:

- `file://` (on a local machine only)
- `ftp://`
- `gsiftp://`
- `http://`

1. http://www.doegrids.org/pages/cert-request.htm
• https://

Versions from GT 4.2 and later support the following URL prefix (in addition to the above-mentioned URL prefixes):

• sshftp://

⚠️ Note

We do not provide an interactive client similar to the generic FTP client provided with Linux. See the Interactive Clients section below for information on an interactive client developed by NCSA/NMI/TeraGrid.

URL formats

URLs can be any valid URL as defined by RFC 1738 that have a protocol we support. In general, they have the following format: `protocol://host:port/path`.

⚠️ Note

If the path ends with a trailing / (i.e. `/path/to/directory/`) it will be considered to be a directory and all files in that directory will be moved. If you want a recursive directory move, you need to add the `-r/-recurse` switch described below.

Table 10. URL formats

<table>
<thead>
<tr>
<th>URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://myhost.mydomain.com/mywebpage/default.html</td>
<td>Port is not specified; therefore, GridFTP uses protocol default (in this case, 80).</td>
</tr>
<tr>
<td>file:///foo.dat</td>
<td>Host is not specified; therefore, GridFTP uses your local host. Port is not specified; therefore, GridFTP uses protocol default (in this case, 80).</td>
</tr>
<tr>
<td>file://foo.dat</td>
<td>This is also valid but is not recommended because, while many servers (including ours) accept this format, it is not RFC conformance and is not recommended.</td>
</tr>
</tbody>
</table>

⚠️ Important

For GridFTP (`gsiftp://`) and FTP (`ftp://`), it is legal to specify a user name and password in the the URL as follows:

```plaintext
gsiftp://myname:[mypassword]@myhost.mydomain.com/foo.dat
```

If you are using GSI security, then you may specify the username (but you may **not** include the : or the password) and the grid-mapfile will be searched to see if that is a valid account mapping for your distinguished name (DN). If it is found, the server will setuid to that account. If not, it will fail. It will NOT fail back to your default account.

If you are using anonymous FTP, the username **must** be one of the usernames listed as a valid anonymous name and the password can be anything.
If you are using password authentication, you must specify both your username and password. THIS IS HIGHLY
DISCOURAGED, AS YOU ARE SENDING YOUR PASSWORD IN THE CLEAR ON THE NETWORK.
This is worse than no security; it is a false illusion of security.

Command line options

Informational Options

- **help | -usage** Prints help.
- **-version** Prints the version of this program.
- **-versions** Prints the versions of all modules that this program uses.
- **-q | -quiet** Suppresses all output for successful operation.
- **-vb | -verbose** During the transfer, displays:
 - number of bytes transferred,
 - performance since the last update (currently every 5 seconds), and
 - average performance for the whole transfer.
- **-dbg | -debugftp** Debugs FTP connections and prints the entire control channel protocol exchange to
 STDOUT.

Very useful for debugging. Please provide this any time you are requesting assistance
with a globus-url-copy problem.

- **-list <url>** This option will display a directory listing for the given url.
- **-nl-bottleneck | -nlb** This option uses NetLogger to estimate speeds of disk and network read/write system
calls, and attempt to determine the bottleneck component.

⚠️ **Note**

In order to use this, the server must be configured to enable netlogger bottleneck
detection².

Utility Ease of Use Options

- **-a | -ascii** Converts the file to/from ASCII format to/from local file format.
- **-b | -binary** Does not apply any conversion to the files. This option is turned on by default.
- **-cd | -create-dest** Create destination directories, if needed
- **-f filename** Reads a list of URL pairs from a filename.
 Each line should contain:

 `sourceURL destURL`

Enclose URLs with spaces in double quotes (""). Blank lines and lines beginning with the hash sign (#) will be ignored.

-`r` | `-recurse` Copies files in subdirectories.

-`notpt` | `-no-third-party-transfers` Turns third-party transfers off (on by default).

Site firewall and/or software configuration may prevent a connection between the two servers (a third party transfer). If this is the case, globus-url-copy will "relay" the data. It will do a GET from the source and a PUT to the destination.

This obviously causes a performance penalty but will allow you to complete a transfer you otherwise could not do.

Reliability Options

-`rst` | `-restart` Reverts failed FTP operations.

-`rst-retries <retries>` Specifies the maximum number of times to retry the operation before giving up on the transfer.

Use 0 for infinite.

The default value is 5.

-`rst-interval <seconds>` Specifies the interval in seconds to wait after a failure before retrying the transfer.

Use 0 for an exponential backoff.

The default value is 0.

-`rst-timeout <seconds>` Specifies the maximum time after a failure to keep retrying.

Use 0 for no timeout.

The default value is 0.

-`df <filename> | -dumpfile <filename>` Specifies path to the file where untransferred urls will be saved for later restarting. The resulting file is the same format as the `-f` input file. If the file exists, it will be read and all other url input will be ignored.

-`stall-timeout | -st <seconds>` Specifies how long before cancelling/restarting a transfer with no data movement. Set to 0 to disable. Default is 600 seconds.

Performance Options

-`tcp-bs <size> | -tcp-buffer-size <size>` Specifies the size (in bytes) of the TCP buffer to be used by the underlying ftp data channels.

⚠️ **Important**

This is critical to good performance over the WAN.

How do I pick a value?
Options

-parallel <parallelism> Specifies the number of parallel data connections that should be used.

Note
This is one of the most commonly used options.

How do I pick a value?

-block-size <block size> Specifies the size (in bytes) of the buffer to be used by the underlying transfer methods.

-piping (New starting with GT 4.1.3) Allows pipelining. GridFTP is a command response protocol. A client sends one command and then waits for a "Finished response" before sending another. Adding this overhead on a per-file basis for a large data set partitioned into many small files makes the performance suffer. Pipelining allows the client to have many outstanding, unacknowledged transfer commands at once. Instead of being forced to wait for the "Finished response" message, the client is free to send transfer commands at any time.

-multicasting <filename> <source_url> (New starting with GT 5.0.0) Transfers a single file to many destinations. Filename is a line-separated list of destination urls. For more information on this option, click here.

Multicasting must be enabled for use on the server side.

-concurrency | -cc Specifies the number of concurrent FTP connections to use for multiple transfers.

-udt Uses UDT, a reliable UDP-based transport protocol, for data transfers.

-fast Recommended when using GridFTP servers. Use MODE E for all data transfers, including reusing data channels between list and transfer operations.

Note: In order to use this option, the server must be configured to use UDT. For third party transfers, no change is required on the client side. For client-server transfers, you need the threaded flavor of the client. Refer to Switching between threaded and non-threaded flavors for information on how to switch between threaded and non-threaded flavors of globus-url-copy.

Security Related Options

-subject <subject> Specifies a subject to match with both the source and destination servers.

Note
Used when the server does not have access to the host certificate (usually when you are running the server as a user). See the section called "If you run a GridFTP server by hand...".

-source-subject <subject> Specifies a subject to match with the source server.
-ds <subject> | -dest-subject <subject>

Specifies a subject to match with the destination server.

Note

Used when the server does not have access to the host certificate (usually when you are running the server as a user). See the section called “If you run a GridFTP server by hand...”.

-nodcau | -no-data-channel-authentication

Turns off data channel authentication for FTP transfers (the default is to authenticate the data channel).

Warning

We do not recommend this option, as it is a security risk.

-dcsafe | -data-channel-safe

Sets data channel protection mode to SAFE.

Otherwise known as *integrity* or *checksumming*.

Guarantees that the data channel has not been altered, though a malicious party may have observed the data.

Warning

Rarely used as there is a substantial performance penalty.

-dcpriv | -data-channel-private

Sets data channel protection mode to PRIVATE.

The data channel is encrypted and checksummed.

Guarantees that the data channel has not been altered and, if observed, it won't be understandable.

Warning

VERY rarely used due to the VERY substantial performance penalty.

Advanced Options

- **stripe**

 Enables striped transfers on supported servers.

- **striped-block-size** | **-sbs**

 Sets layout mode and blocksize for striped transfers.

 If not set, the server defaults will be used.
If set to 0, partitioned mode will be used.

If set to >0, blocked mode will be used, with this setting used as the blocksize.

-\texttt{t <transfer time in seconds>} Runs the transfer for the specified number of seconds and then ends. Useful for performance testing or forced restart loops.

-ipv6 Uses ipv6 when available.

\textbf{Warning}

This option is EXPERIMENTAL. Use at your own risk.

-\texttt{dp | -delayed-pasv} Enables delayed passive.

-\texttt{g2 | -gridftp2} Uses GridFTP v2 protocol enhancements when possible.

-\texttt{mn | -module-name <gridftp storage module name>} Specifies the backend storage module to use for both the source and destination in a GridFTP transfer.

-\texttt{mp | -module-parameters <gridftp storage module parameters>} Specifies the backend storage module arguments to use for both the source and destination in a GridFTP transfer.

-\texttt{smn | -src-module-name <gridftp storage module name>} Specifies the backend storage module to use for the source file in a GridFTP transfer.

-\texttt{smp | -src-module-parameters <gridftp storage module parameters>} Specifies the backend storage module arguments to use for the source file in a GridFTP transfer.

-\texttt{dmn | -dst-module-name <gridftp storage module name>} Specifies the backend storage module to use for the destination file in a GridFTP transfer.

-\texttt{dmp | -dst-module-parameters <gridftp storage module parameters>} Specifies the backend storage module arguments to use for the destination file in a GridFTP transfer.

-\texttt{aa | -authz-assert <authorization assertion file>} Uses the assertions in the specified file to authorize access to both the source and destination servers.

-\texttt{saa | -src-authz-assert <authorization assertion file>} Uses the assertions in the specified file to authorize access to the source server.

-\texttt{daa | -dst-authz-assert <authorization assertion file>} Uses the assertions in the specified file to authorize access to the destination server.

-\texttt{cache-aa | -cache-authz-assert} Caches the authorization assertion for subsequent transfers.

-\texttt{cache-saa | -cache-src-authz-assert} Caches the source authorization assertion for subsequent transfers.

-\texttt{cache-daa | -cache-dst-authz-assert} Caches the destination authorization assertion for subsequent transfers.

-\texttt{nl-bottleneck | -nlb} Uses NetLogger to estimate speeds of disk and network read/write system calls, and attempt to determine the bottleneck component.

Note: In order to use this, the server must be configured to enable netlogger bottleneck detection.
-src-pipe | -SP <command line> Sets the source end of a remote transfer to use piped-in input with the given command line.

Warning

Do not use with the `-fsstack` option.

-dst-pipe | -DP <command line> Sets the destination end of a remote transfer to write data to then standard input of the program run via the given command line.

Warning

Do not use with the `-fsstack` option.

-pipe <command line> Sets both `-src-pipe` and `-dst-pipe` to the same value.

dcstack | -data-channel-stack Specifies the XIO driver stack for the network on both the source and the destination. Both must be GridFTP servers.

-fsstack | -file-system-stack Specifies the XIO driver stack for the disk on both the source and the destination. Both must be GridFTP servers.

-src-dcstack | -source-data-channel-stack Specifies the XIO driver stack for the network on the source GridFTP server.

-src-fsstack | -source-file-system-stack Specifies the XIO driver stack for the disk on the source GridFTP server.

-dst-dcstack | -dest-data-channel-stack Specifies the XIO driver stack for the network on the destination GridFTP server.

-dst-fsstack | -dest-file-system-stack Specifies the XIO driver stack for the disk on the destination GridFTP server.

-cred <path to credentials or proxy file>, -src-cred | -sc <path to credentials or proxy file>, -dst-cred | -dc <path to credentials or proxy file> Specifies the credentials to use for source, destination, or both FTP connections.

-af <filename> | -alias-file <filename> Specifies a file that maps logical host aliases to lists of physical hosts. When used with multiple concurrent connections, each connection uses the next host in the list. Each line should either be an alias (noted with the @ symbol), or a hostname[:port]. Currently, only the aliases @source and @destination are valid, and they are used for every source or destination url.

Default globus-url-copy usage

A `globus-url-copy` invocation using the `gsiftp` protocol with no options (i.e., using all the defaults) will perform a transfer with the following characteristics:

- binary
- stream mode (which implies no parallelism)
- host default TCP buffer size
MODES in GridFTP

GridFTP (as well as normal FTP) defines multiple wire protocols, or MODES, for the data channel.

Most normal FTP servers only implement stream mode (MODE S), i.e. the bytes flow in order over a single TCP connection. GridFTP defaults to this mode so that it is compatible with normal FTP servers.

However, GridFTP has another MODE, called Extended Block Mode, or MODE E. This mode sends the data over the data channel in blocks. Each block consists of 8 bits of flags, a 64 bit integer indicating the offset from the start of the transfer, and a 64 bit integer indicating the length of the block in bytes, followed by a payload of length bytes. Because the offset and length are provided, out of order arrival is acceptable, i.e. the 10th block could arrive before the 9th because you know explicitly where it belongs. This allows us to use multiple TCP channels. If you use the -p | -parallelism option, globus-url-copy automatically puts the servers into MODE E.

Note

Putting -p 1 is not the same as no -p at all. Both will use a single stream, but the default will use stream mode and -p 1 will use MODE E.

If you run a GridFTP server by hand...

If you run a GridFTP server by hand, you will need to explicitly specify the subject name to expect. The subject option provides globus-url-copy with a way to validate the remote servers with which it is communicating. Not only must the server trust globus-url-copy, but globus-url-copy must trust that it is talking to the correct server. The validation is done by comparing host DNs or subjects.

If the GridFTP server in question is running under a host certificate then the client assumes a subject name based on the server's canonical DNS name. However, if it was started under a user certificate, as is the case when a server is started by hand, then the expected subject name must be explicitly stated. This is done with the -ss, -sd, and -s options.

-ss Sets the sourceURL subject.

-ds Sets the destURL subject.

-s If you use this option alone, it will set both urls to be the same. You can see an example of this usage under the Troubleshooting section.

Note

This is an unusual use of the client. Most times you need to specify both URLs.

How do I choose a value?

How do I choose a value for the TCP buffer size (-tcp-bs) option?

The value you should pick for the TCP buffer size (-tcp-bs) depends on how fast you want to go (your bandwidth) and how far you are moving the data (as measured by the Round Trip Time (RTT) or the time it takes a packet to get to the destination and back).
To calculate the value for `-tcp-bs`, use the following formula (this assumes that Mega means 1000^2 rather than 1024^2, which is typical for bandwidth):

\[-\text{tcp-bs} = \text{bandwidth in Megabits per second (Mbs)} \times \text{RTT in milliseconds (ms)} \times 1000 / 8\]

As an example, if you are using fast ethernet (100 Mbs) and the RTT was 50 ms it would be:

\[-\text{tcp-bs} = 100 \times 50 \times 1000 / 8 = 625,000 \text{ bytes}.\]

So, how do you come up with values for bandwidth and RTT? To determine RTT, use either ping or traceroute. They both list RTT values.

Note

You must be on one end of the transfer and ping the other end. This means that if you are doing a third party transfer you have to run the ping or traceroute between the two server hosts, not from your client.

The bandwidth is a little trickier. Any point in the network can be the bottleneck, so you either need to talk with your network engineers to find out what the bottleneck link is or just assume that your host is the bottleneck and use the speed of your network interface card (NIC).

Note

The value you pick for `-tcp-bs` limits the top speed you can achieve. You will NOT get bandwidth any higher than what you used in the calculation (assuming the RTT is actually what you specified; it varies a little with network conditions). So, if for some reason you want to limit the bandwidth you get, you can do that by judicious choice of `-tcp-bs` values.

So where does this formula come from? Because it uses the bandwidth and the RTT (also known as the latency or delay) it is called the bandwidth delay product. The very simple explanation is this: TCP is a reliable protocol. It must save a copy of everything it sends out over the network until the other end acknowledges that it has been received.

As a simple example, if I can put one byte per second onto the network, and it takes 10 seconds for that byte to get there, and 10 seconds for the acknowledgment to get back (RTT = 20 seconds), then I would need at least 20 bytes of storage. Then, hopefully, by the time I am ready to send byte 21, I have received an acknowledgement for byte 1 and I can free that space in my buffer. If you want a more detailed explanation, try the following links on TCP tuning:

- http://www.psc.edu/networking/perf_tune.html
- http://www.ncne.nlanr.net/research/tcp/

How do I choose a value for the parallelism (-p) option?

For most instances, using 4 streams is a very good rule of thumb. Unfortunately, there is not a good formula for picking an exact answer. The shape of the graph shown here is very characteristic.
Figure 1. Effect of Parallel Streams in GridFTP

Effect of Parallel Streams
ANL to IS1 (n=5)

You get a strong, nearly linear, increase in bandwidth, then a sharp knee, after which additional streams have very little impact. Where this knee is depends on many things, but it is generally between 2 and 10 streams. Higher bandwidth, longer round trip times, and more congestion in the network (which you usually can only guess at based on how applications are behaving) will move the knee higher (more streams needed).

In practice, between 4 and 8 streams are usually sufficient. If things look really bad, try 16 and see how much difference that makes over 8. However, anything above 16, other than for academic interest, is basically wasting resources.

Limitations

There are no limitations for globus-url-copy in GT 5.0.0.

Interactive clients for GridFTP

The Globus Project does not provide an interactive client for GridFTP. Any normal FTP client will work with a GridFTP server, but it cannot take advantage of the advanced features of GridFTP. The interactive clients listed below take advantage of the advanced features of GridFTP.

There is no endorsement implied by their presence here. We make no assertion as to the quality or appropriateness of these tools, we simply provide this for your convenience. We will not answer questions, accept bugs, or in any way shape or form be responsible for these tools, although they should have mechanisms of their own for such things.

UberFTP was developed at the NCSA under the auspices of NMI and TeraGrid:

- NCSA Uberftp only download: http://dims.ncsa.uiuc.edu/set/uberftp/download.html
Name

globus-gridftp-server -- Configures the GridFTP Server

globus-gridftp-server

Tool description

globus-gridftp-server configures the GridFTP server using a config file and/or commandline options.

Note

Command line options and configuration file options may both be used, but the command line overrides the config file.

The configuration file for the GridFTP server is read from the following locations, in the given order. Only the first file found will be loaded:

- Path specified with the -c <configfile> command line option.
- $GLOBUS_LOCATION/etc/gridftp.conf
- /etc/grid-security/gridftp.conf

Options are one per line, with the format:

<option> <value>

If the value contains spaces, they should be enclosed in double-quotes ("). Flags or boolean options should only have a value of 0 or 1. Blank lines and lines beginning with # are ignored.

For example:

port 5000
allow_anonymous 1
anonymous_user bob
banner "Welcome!"

Developer notes

The Globus implementation of the GridFTP server draws on:

- three IETF RFCs:
 - RFC 959
 - RFC 2228
 - RFC 2389
- an IETF Draft: MLST-16
- the GridFTP protocol specification, which is Global Grid Forum (GGF) Standard GFD.020.
The command line tools and the client library completely hide the details of the protocol from the user and the developer. Unless you choose to use the control library, it is not necessary to have a detailed knowledge of the protocol.

Command syntax

The basic syntax for **globus-gridftp-server** is:

```
globus-gridftp-server [optional command line switches]
```

To use **globus-gridftp-server** with a config file, make sure to use the `-c <configfile>` option.

Command line options

The table below lists config file options, associated command line options (if available) and descriptions.

Note

Any boolean option can be negated on the command line by preceding the specified option with `-no-` or `-n`. Example: `-no-cas` or `-nf`.

Informational Options

help <0|1>, -h, -help

Show usage information and exit.

Default value: FALSE

version <0|1>, -v, -version

Show version information for the server and exit.

Default value: FALSE

versions <0|1>, -V, -versions

Show version information for all loaded globus libraries and exit.

Default value: FALSE

Modes of Operation

inetd <0|1>, -i, -inetd

Run under an inetd service.

Default value: FALSE

daemon <0|1>, -s, -daemon

Run as a daemon. All connections will fork off a new process and setuid if allowed. See Section 4, “Running in daemon mode” for more information.

Default value: TRUE

detach <0|1>, -S, -detach

Run as a background daemon detached from any controlling terminals. See Section 4, “Running in daemon mode” for more information.

Default value: FALSE

exec <string>, -exec <string>

For statically compiled or non-GLOBUS_LOCATION standard binary locations, specify the full path of the server binary here. Only needed when run in daemon mode.

Default value: not set
chdir <0|1>, -chdir
Change directory when the server starts. This will change directory to the dir specified by the chdir_to option.

Default value: TRUE

chdir_to <string>, -chdir-to <string>
Directory to chdir to after starting. Will use / if not set.

Default value: not set

fork <0|1>, -f, -fork
Server will fork for each new connection. Disabling this option is only recommended when debugging. Note that non-forked servers running as 'root' will only accept a single connection and then exit.

Default value: TRUE

single <0|1>, -1, -single
Exit after a single connection.

Default value: FALSE

Authentication, Authorization, and Security Options

auth_level <number>, -auth-level <number>
- 0 = Disables all authorization checks.
- 1 = Authorize identity only.
- 2 = Authorize all file/resource accesses.

If not set, the GridFTP Server uses level 2 for front ends and level 1 for data nodes.

Default value: not set

allow_from <string>, -allow-from <string>
Only allow connections from these source IP addresses. Specify a comma-separated list of IP address fragments. A match is any IP address that starts with the specified fragment. Example: '192.168.1.' will match and allow a connection from 192.168.1.45. Note that if this option is used, any address not specifically allowed will be denied.

Default value: not set

deny_from <string>, -deny-from <string>
Deny connections from these source IP addresses. Specify a comma-separated list of IP address fragments. A match is any IP address that starts with the specified fragment. Example: '192.168.2.' will match and deny a connection from 192.168.2.45.

Default value: not set

secure_ipc <0|1>, -si, -secure-ipc
Use GSI security on the IPC channel.

Default value: TRUE

ipc_auth_mode <string>, -ia <string>
Set GSI authorization mode for the IPC connection. Options are one of the following:
- none
-ipc-auth-mode <string>

• host
• self
• subject:<subject>

Default value: host

allow_anonymous <0|1>, -aa, -allow-anonymous

Allow cleartext anonymous access. If server is running as root, anonymous_user must also be set. Disables IPC security.

Default value: FALSE

anonymous_names_allowed <string>, -anonymous-names-allowed

Comma-separated list of names to treat as anonymous users when allowing anonymous access. If not set, the default names of 'anonymous' and 'ftp' will be allowed. Use '*' to allow any username.

Default value: not set

anonymous_user <string>, -anonymous-user <string>

User to setuid to for an anonymous connection. Only applies when running as root.

Default value: not set

anonymous_group <string>, -anonymous-group <string>

Group to setgid to for an anonymous connection. If not set, the default group of anonymous_user will be used.

Default value: not set

pw_file <string>, -password-file <string>

Enable cleartext access and authenticate users against this /etc/passwd formatted file.

Default value: not set

connections_max <number>, -connections-max <number>

Maximum concurrent connections allowed. Only applies when running in daemon mode. Unlimited if not set.

Default value: not set

connections_disabled <0|1>, -connections-disabled

Disable all new connections. Does not affect ongoing connections. This must be set in the configuration file and then a SIGHUP issued to the server in order to reload the configuration.

Default value: FALSE

Logging Options

log_level <string>, -d <string>,

Log level. A comma-separated list of levels from the following:

• ERROR
-log-level <string> • WARN
• INFO
• DUMP
• ALL
For example:

globus-gridftp-server -d error,warn,info

You may also specify a numeric level of 1-255.

Default value: ERROR

log_module <string>, -l
Indicates the globus_logging module that will be loaded. If not set, the default stdio module will be used and the logfile options (see next option) will apply.

Built-in modules are stdio and syslog. Log module options may be set by specifying module:opt1=val1:opt2=val2. Available options for the built-in modules are:

- interval - Indicates buffer flush interval. Default is 5 seconds. A 0 second flush interval will disable periodic flushing, and the buffer will only flush when it is full.

- buffer - Indicates buffer size. Default is 64k. A value of 0k will disable buffering and all messages will be written immediately.

Example:

-log-module stdio:buffer=4096:interval=10

Default value: not set

log_single <string>, -l <string>,
-log-file <string>
Indicates the path of a single file to which you want to log all activity. If neither this option nor log_unique is set, logs will be written to stderr, unless the execution mode is detached, or inetd, in which case logging will be disabled.

Default value: not set

log_unique <string>, -L <string>, -log-dir <string>
Partial path to which gridftp.(pid).log will be appended to construct the log filename.

Example:

-Log /var/log/gridftp/

will create a separate log (/var/log/gridftp/gridftp.xxxx.log) for each process (which is normally each new client session). If neither this option nor log_single is set, logs will be written to stderr, unless the execution mode is detached, or inetd, in which case logging will be disabled.

Default value: not set

log_transfer <string>, -Z <string>,
-log-transfer <string>
Log NetLogger-style info for each transfer into this file.

Default value: not set

Example: DATE=20050520163008.306532 HOST=localhost PROG=globus-gridftp-server NL.EVNT=FTP_INFO START=20050520163008.305913 USER=ftp FILE=/etc/group BU
FER=0 BLOCK=262144 NBYTES=542 VOLUME=/ STREAMS=1 STRIPES=1
DEST=[127.0.0.1] TYPE=RETR CODE=226

Time format is YYYYMMDDHHMMSS.UUUUUU (microsecs).

- DATE: time the transfer completed.
- START: time the transfer started.
- HOST: hostname of the server.
- USER: username on the host that transferred the file.
- BUFFER: tcp buffer size (if 0 system defaults were used).
- BLOCK: the size of the data block read from the disk and posted to the network.
- NBYTES: the total number of bytes transferred.
- VOLUME: the disk partition where the transfer file is stored.
- STREAMS: the number of parallel TCP streams used in the transfer.
- STRIPES: the number of stripes used on this end of the transfer.
- DEST: the destination host.
- TYPE: the transfer type, RETR is a send and STOR is a receive (ftp 959 commands).
- CODE: the FTP rfc959 completion code of the transfer. 226 indicates success, 5xx or 4xx are failure codes.

log_filemode <string>, -log-filemode <string>

File access permissions of log files. Should be an octal number such as 0644 (the leading 0 is required).
Default value: not set

disable_usage_stats <0|1>, -disable-usage-stats

Disable transmission of per-transfer usage statistics. See the Usage Statistics¹ section in the online documentation for more information.
Default value: FALSE

usage_stats_target <string>, -usage-stats-target <string>

Comma-separated list of contact strings for usage statistics listeners. The format of <string> is host:port.
Default value: usage-stats.globus.org:4810

Example:

In this example, the usage statistics will be transmitted to the default Globus target (usage-stats.globus.org:4810) and another target (usage-stats.uc.teragrid.org:5920).

¹ ../../../Usage_Stats.html
Single and Striped Remote Data Node Options

```
remote_nodes <string>, -r <string>, -remote-nodes <string>
```
Comma-separated list of remote node contact strings. See Remote data-nodes and striped operations and Separation of processes for higher security for examples of using this option.
Default value: not set

```
data_node <0|1>, -dn, -data-node
```
This server is a back end data node. See Separation of processes for higher security for an example of using this option.
Default value: FALSE

```
stripe_blocksize <number>, -sbs <number>, -stripe-blocksize <number>
```
Size in bytes of sequential data that each stripe will transfer.
Default value: 1048576

```
stripe_layout <number>, -sl <number>, -stripe-layout <number>
```
Striped layout. 1 = Partitioned, 2 = Blocked.
Default value: 2

```
stripe_blocksize_locked <0|1>, -stripe-blocksize-locked;
```
Do not allow client to override stripe blocksize with the OPTS RETR command.
Default value: FALSE

```
stripe_layout_locked <0|1>, -stripe-layout-locked
```
Do not allow client to override stripe layout with the OPTS RETR command.
Default value: FALSE

Disk Options

```
blocksize <number>, -bs <number>, -blocksize <number>
```
Size in bytes of data blocks to read from disk before posting to the network.
Default value: 262144

```
sync_writes <0|1>, -sync-writes
```
Flush disk writes before sending a restart marker. This attempts to ensure that the range specified in the restart marker has actually been committed to disk. This option will probably impact performance and may result in different behavior on different storage systems. See the man page for sync() for more information.
Default value: FALSE
Network Options

port <number>, -p <number>, -port <number>
Port on which a front end will listen for client control channel connections or on which a data node will listen for connections from a front end. If not set, a random port will be chosen and printed via the logging mechanism. See Remote data-nodes and striped operations and Separation of processes for higher security for examples of using this option.

Default value: not set

control_interface <string>, -control-interface <string>
Hostname or IP address of the interface to listen for control connections on. If not set, will listen on all interfaces.

Default value: not set

data_interface <string>, -data-interface <string>
Hostname or IP address of the interface to use for data connections. If not set will use the current control interface.

Default value: not set

ipc_interface <string>, -ipc-interface <string>
Hostname or IP address of the interface to use for IPC connections. If not set, will listen on all interfaces.

Default value: not set

hostname <string>, -hostname <string>
Effectively sets the above control_interface, data_interface and ipc_interface options.

Default value: not set

ipc_port <number>, -ipc-port <number>
Port on which the front end will listen for data node connections.

Default value: not set

Timeouts

control_preauth_timeout <number>, -control-preauth-timeout <number>
Time in seconds to allow a client to remain connected to the control channel without activity before authenticating.

Default value: 30

control_idle_timeout <number>, -control-idle-timeout <number>
Time in seconds to allow a client to remain connected to the control channel without activity.

Default value: 600

ipc_idle_timeout <number>, -ipc-idle-timeout <number>
Idle time in seconds before an unused IPC connection will close.

Default value: 600
timeout <number>
 Time in seconds before cancelling an attempted IPC connection.
 Default value: 60

ipc_connect_timeout <number>,
 -ipc-connect-timeout <number>
User Messages

banner <string>,
 -banner <string>
 Message that is displayed to the client before authentication.
 Default value: not set

banner_file <string>,
 -banner-file <string>
 Read banner message from this file.
 Default value: not set

banner_terse <0|1>,
 -banner-terse
 When this is set, the minimum allowed banner message will be displayed to unauthenticated clients.
 Default value: FALSE

login_msg <string>,
 -login-msg <string>
 Message that is displayed to the client after authentication.
 Default value: not set

login_msg_file <string>,
 -login-msg-file <string>
 Read login message from this file.
 Default value: not set

Module Options

load_dsi_module <string>,
 -dsi <string>
 Load this Data Storage Interface module. File and remote modules are defined by the server. If not set, the file module is loaded, unless the remote option is specified, in which case the remote module is loaded. An additional configuration string can be passed to the DSI using the format [module name]:[configuration string]. The format of the configuration string is defined by the DSI being loaded.
 Default value: not set

allowed_modules <string>,
 -allowed-modules <string>
 Comma-separated list of ERET/ESTO modules to allow and, optionally, specify an alias for. Example:
 -allowed-modules module1,alias2:module2,module3
 (module2 will be loaded when a client asks for alias2).
Default value: not set

Other Options

- **configfile**: Path to configuration file that should be loaded. Otherwise will attempt to load $GLOBUS_LOCATION/etc/gridftp.conf and /etc/grid-security/gridftp.conf.

 Default value: not set

- **use_home_dirs**: Set the startup directory to the authenticated user's home dir.

 Default value: TRUE

- **debug**: Set options that make the server easier to debug. Forces no-fork, no-chdir, and allows core dumps on bad signals instead of exiting cleanly. Not recommended for production servers. Note that non-forked servers running as root will only accept a single connection and then exit.

 Default value: FALSE

Limitations

For transfers using parallel data transport streams and for transfers using multiple computers at each end, the direction of the connection on the data channels must go from the sending to the receiving side. For more information about this limitation see http://www.ogf.org/documents/GFD.20.pdf.

Globus GridFTP server does not run on windows.
Replica Location Service (RLS) Commands
Name

globus-rls-admin -- RLS administration tool
globus-rls-admin

Tool description

Performs administrative operations on an RLS server.

Synopsis

-A|-a|-C option value|-c option|-d|-e|-p|-q|-s|-t timeout|-u|-v [rli] [pattern] [server]
Options

Table 11. Options for globus-rls-admin

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-A</td>
<td>Adds rli to the list of RLI servers updated by an LRC server using Bloom filters. Note: Partitions are not supported with Bloom filters. The LRC server maintains one Bloom filter for all LFNs in its database, which is sent to all RLI servers configured to receive Bloom filter updates with this option.</td>
</tr>
<tr>
<td>-a</td>
<td>Adds rli and optionally pattern to the list of RLI servers that the LRC server sends updates to (using a list of LFNs). If pattern is specified, then only LFNs matching it will be sent to rli. If rli is added with no patterns, then it is sent all updates. Pattern matching is done using standard Unix file globbing.</td>
</tr>
<tr>
<td>-C option value</td>
<td>Sets server option to value. Important: This does not update the configuration file. The next time the server is restarted, the configuration change will be lost.</td>
</tr>
<tr>
<td>-c option</td>
<td>Retrieves the configuration value for the specified option from the server. If option is set to all, then all options are retrieved.</td>
</tr>
<tr>
<td>-d</td>
<td>Removes rli and pattern from the list of RLI servers that the LRC server sends updates to. If pattern is not specified, then all entries for rli are removed. Note: If all patterns are removed separately, then rli is sent all updates. To stop any updates from being sent to rli, do not specify pattern.</td>
</tr>
<tr>
<td>-e</td>
<td>Clears the LRC database. Removes all lfn, pfn mappings.</td>
</tr>
<tr>
<td>-p</td>
<td>Verifies that the server is responding.</td>
</tr>
<tr>
<td>-q</td>
<td>Causes the RLS server to exit.</td>
</tr>
<tr>
<td>-S</td>
<td>Shows statistics and other information gathered by the RLS server. This is intended to be input into GRIS.</td>
</tr>
<tr>
<td>-s</td>
<td>Shows the list of RLI servers and patterns being sent updates by the LRC server. If rli or pattern are not specified, they are considered wildcards.</td>
</tr>
<tr>
<td>-t timeout</td>
<td>Sets timeout (in seconds) for RLS server requests. The default value is 30.</td>
</tr>
<tr>
<td>-u</td>
<td>Causes the LRC server to immediately start full soft state updates to any RLI servers previously added with the -a option.</td>
</tr>
<tr>
<td>-v</td>
<td>Shows the version and exits.</td>
</tr>
</tbody>
</table>
Name

globus-rls-cli -- RLS client tool

globus-rls-cli

Tool description

Provides a command line interface to some of the functions supported by RLS. It also supports an interactive interface (if command is not specified). In interactive mode, double quotes may be used to encode an argument that contains white space.

Synopsis

command [-c] [-h] [-l reslimit] [-s] [-t timeout] [-u] [command] rls-server

Options

The client command tool uses getopt for command line parsing.

Note: Some versions will continue scanning for options (works that begin with a hyphen) for the entire command line, which makes it impossible to specify negative integer or floating point value for an attribute. The workaround for this problem is to tell getopt() that there are no more options by including 2 hyphens. For example, to specify the value -2 you must enter -- -2.

Table 12. Options for globus-rls-cli

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Sets "clearvalues" flag when deleting an attribute (will remove any attribute value records when an attribute is deleted).</td>
</tr>
<tr>
<td>-h</td>
<td>Shows usage.</td>
</tr>
<tr>
<td>-l reslimit</td>
<td>Sets an incremental limit on the number of results returned by a wildcard query at a time. Note that all results will be returned by the client. This parameter only limits the number of results incrementally retrieved by the client during a single internal communication call. For instance, if the wildcard query produces 1000 results and the reslimit is set to 100, the client will internally make 10 calls to the server. From the user's perspective the client will simply return all 1000 results. Zero means no limit.</td>
</tr>
<tr>
<td>-s</td>
<td>Uses SQL style wildcards (%) and _).</td>
</tr>
<tr>
<td>-t timeout</td>
<td>Sets timeout (in seconds) for RLS server requests. The default is 30 seconds.</td>
</tr>
<tr>
<td>-u</td>
<td>Uses Unix style wildcards (*) and ?).</td>
</tr>
<tr>
<td>-v</td>
<td>Shows version.</td>
</tr>
</tbody>
</table>
Commands
Table 13. Commands for globus-rls-cli

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add <lfn> <pfn></td>
<td>Adds pfn to mappings of lfn in an LRC catalog.</td>
</tr>
<tr>
<td>attribute add <object> <attr> <obj-type></td>
<td>Adds an attribute to an object, where object should be the lfn or pfn name.</td>
</tr>
<tr>
<td></td>
<td>obj-type should be one of lfn or pfn. attr-type should be one of date, float, int, or string. If <value> is of type date then it should be in the form "YYYY-MM-DD HH:MM:DD".</td>
</tr>
<tr>
<td>attribute bulk add <object> <attr> <obj-type></td>
<td>Bulk adds attribute values.</td>
</tr>
<tr>
<td>attribute bulk delete <object> <attr> <obj-type></td>
<td>Bulk deletes attributes.</td>
</tr>
<tr>
<td>attribute bulk query <attr> <obj-type> <object></td>
<td>Bulk queries attributes.</td>
</tr>
<tr>
<td>attribute define <attr> <obj-type> <attr-type></td>
<td>Defines a new attribute.</td>
</tr>
<tr>
<td>attribute delete <object> <attr> <obj-type></td>
<td>Removes attribute from object.</td>
</tr>
<tr>
<td>attribute modify <object> <attr> <obj-type> <attr-type></td>
<td>Modifies the value of an attribute.</td>
</tr>
<tr>
<td>attribute query <object> <attr> <obj-type></td>
<td>Retrieves the value of the specified attribute for object.</td>
</tr>
<tr>
<td>attribute search <attr> <obj-type> <operator> <attr-type></td>
<td>Searches for objects which have the specified attribute matching operator and value. operator should be one of =, !=, >, >=, <, or <=.</td>
</tr>
<tr>
<td>attribute show <attr> <obj-type></td>
<td>Shows an attribute definition. If attr is a hyphen (-) then all attributes are shown.</td>
</tr>
<tr>
<td>attribute undeclare <attr> <obj-type></td>
<td>Deletes an attribute definition. Will return an error if any objects possess this attribute.</td>
</tr>
<tr>
<td>bulk add <lfn> <pfn> [<lfn> <pfn>]</td>
<td>Bulk adds lfn, pfn mappings.</td>
</tr>
<tr>
<td>bulk create <lfn> <pfn> [<lfn> <pfn>]</td>
<td>Bulk creates lfn, pfn mappings.</td>
</tr>
<tr>
<td>bulk delete <lfn> <pfn> [<lfn> <pfn>]</td>
<td>Bulk deletes lfn, pfn mappings.</td>
</tr>
<tr>
<td>bulk query lrc lfn [<lfn> ...]</td>
<td>Bulk queries the LRC for lfns.</td>
</tr>
<tr>
<td>bulk query lrc pfn [<pfn> ...]</td>
<td>Bulk queries the LRC for pfns.</td>
</tr>
<tr>
<td>bulk query rli lfn [<lfn> ...]</td>
<td>Bulk queries the RLI for lfns.</td>
</tr>
<tr>
<td>create <lfn> <pfn></td>
<td>Creates a new lfn, pfn mapping in an LRC catalog.</td>
</tr>
<tr>
<td>delete <lfn> <pfn></td>
<td>Deletes a lfn, pfn mapping from an LRC catalog.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits the interactive session.</td>
</tr>
<tr>
<td>help</td>
<td>Prints a help message.</td>
</tr>
<tr>
<td>query lrc lfn <lfn></td>
<td>Queries an LRC server for mappings of lfn.</td>
</tr>
<tr>
<td>query lrc pfn <pfn></td>
<td>Queries an LRC server for mappings to pfn.</td>
</tr>
<tr>
<td>query rli lfn <lfn></td>
<td>Queries an RLI server for mappings of lfn.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td><code>query wildcard lrc lfn <lfn-pattern></code></td>
<td>Performs a wildcarded query of an LRC server for mappings of <code>lfn-pattern</code>. Patterns use the standard Unix wildcard characters: an asterisk (*) matches 0 or more characters, and a question mark (?) matches any single character.</td>
</tr>
<tr>
<td><code>query wildcard lrc pfn <pfn-pattern></code></td>
<td>Queries an LRC server for mappings to <code>pfn-pattern</code>. Patterns use the standard Unix wildcard characters: an asterisk (*) matches 0 or more characters, and a question mark (?) matches any single character.</td>
</tr>
<tr>
<td><code>query wildcard rli lfn <lfn-pattern></code></td>
<td>Queries an RLI server for mappings of <code>lfn-pattern</code>. Patterns use the standard Unix wildcard characters: an asterisk (*) matches 0 or more characters, and a question mark (?) matches any single character.</td>
</tr>
<tr>
<td><code>set reslimit <limit></code></td>
<td>Sets an incremental limit on the number of results returned by a wildcard query at a time. Note that all results will be returned by the client. This parameter only limits the number of results incrementally retrieved by the client during a single internal communication call. For instance, if the wildcard query produces 1000 results and the reslimit is set to 100, the client will internally make 10 calls to the server. From the user’s perspective the client will simply return all 1000 results.</td>
</tr>
<tr>
<td><code>set timeout <timeout></code></td>
<td>Sets the timeout (in seconds) on calls to the RLS server. The default value is 30.</td>
</tr>
<tr>
<td><code>version</code></td>
<td>Shows the version and exits.</td>
</tr>
</tbody>
</table>
Name

globus-rls-server -- RLS server tool

globus-rls-server

Tool description

The RLS server (globus-rls-server) can be configured as either one or both of the following:

• **Location Replica Catalog (LRC)** server, which manages *Logical File Name (LFN)* to *Physical File Name (PFN)* mappings in a database. *Note*: If **globus-rls-server** is configured as an LRC server, the **RLI** servers that it sends updates to should be added to the database using **globus-rls-admin**.

• **Replica Location Index (RLI)** server, which manages mappings of LFNs to LRC servers.

Clients wishing to locate one or more physical filenames associated with a logical filename should first contact an RLI server, which will return a list of LRCs that may know about the LFN. The LRC servers are then contacted in turn to find the physical filenames.

Note: RLI information may be out of date, so clients should be prepared to get a negative response when contacting an LRC (or no response at all if the LRC server is unavailable).

Synopsis

```bash
```

LRC to RLI Updates

Two methods exist for LRC servers to inform RLI servers of their LFNs.

• By default, the LFNs are sent from the LRC to the RLI. This can be time consuming if the number of LFNs is large, but it does give the RLI an exact list of the LFNs known to the LRC, and it allows wildcard searching of the RLI.

• Alternatively, *Bloom filters* may be sent, which are highly compressed summaries of the LFNs. However, they do not allow wildcard searching and will generate more "false positives" when querying an RLI.

Please see below for more on Bloom filters.

globus-rls-admin can be used to manage the list of RLIs that an LRC server updates. This includes partitioning LFNs among multiple RLI servers.

A softstate algorithm is used for updates, periodically the source server sends its state (LFN information) to the RLI servers it updates. The RLI servers add these LFNs to their index, or update a timestamp if the LFNs were already known. RLI servers expire information about LFN,LRC mappings if they haven't been updated for a period longer than the softstate update interval.

Options that can be configured to control the softstate algorithm when a source server updates an RLI by sending LFNs include:
• **rli_expire_int** (seconds)

 How often an RLI server will check for stale entries in its database.

• **rli_expire_stale** (seconds)

 How old an entry must be in an RLI database before it's considered stale. This value should be no smaller than `update_ll_int`. Note if the LRC server is responding this value is not used, instead the value of `update_ll_int` or `update_bf_int` is retrieved from the LRC server, multiplied by 1.2, and used as the value for `rli_expire_stale`.

• **update_bf_int** (seconds)

 Interval between RLI updates when using Bloom filters.

• **update_ll_int** (seconds)

 Interval between RLI updates when using LFN lists for softstate updates.

Updates to an LRC (new LFNs or deleted LFNs) normally don't propagate to RLI servers until the next softstate update (controlled by `update_ll_int` and `update_bf_int`). However by enabling "immediate update" mode an LRC will send updates to an RLI within `update_buftime` seconds. Immediate updates are enabled by setting `update_immediate` to true. If updates are done with LFN lists then only the LFNs that have been added or deleted to the source server are sent, if Bloom filters are used then the entire Bloom filter is sent.

When immediate updates are enabled, the interval between softstate updates is multiplied by `update_factor`, so long as no updates have failed (source and RLI are considered to be in sync). This can greatly reduce the number of softstate updates a source needs to send to an RLI. Incremental updates are buffered by the source server until either 100 updates have accumulated (when LFN lists are used), or `update_buftime` seconds have passed since the last update.

Bloom filter updates

A Bloom filter is an array of bits. Each LFN is hashed multiple times and the corresponding bits in the Bloom filter are set.

Querying an RLI to verify if an LFN exists is done by performing the same hashes and checking if the bits in the filter are on. If not, then the LFN is known not to exist. If they're all on, then all that's known is that the LFN probably exists.

The size of the Bloom filter (as a multiple of the number of LFNs) and the number of hash functions control the false positive rate. The default values of 10 and 3 give a false positive rate of approximately 1%.

The advantage of Bloom filters is their efficiency. For example, if the LRC has 1,000,000 LFNs in its database, with an average length of 20 bytes, then 20,000,000 bytes must be sent to an RLI during a soft state update (assuming no partitioning). The RLI server must perform 1,000,000 updates to its database to create new LFN, LRC mappings or update timestamps on existing entries. With Bloom filters only 1,250,000 bytes are sent (10 x 1,000,000 bits / 8), and there are no database operations on the RLI (Bloom filters are maintained entirely in memory). A comparison of the time to perform a 1,000,000 LFN update: it took 20 minutes sending all the LFNs and less than 1 second using a Bloom filter. However as noted before, Bloom filters do not support wild card searches of an RLI.

Note: An LRC server can update some RLIs with Bloom filters and others with LFNs. However, an RLI server can only be updated using one method.

The following options in the `Configuration` file control Bloom filter updates:

• **rli_bloomfilter true|false**

 RLI servers must have this set to accept Bloom filter updates.
- **rli_bloomfilter_dir none|default|pathname**
 Bloom filters saved in this directory and read at start time if not "none". See CONFIGURATION for details.

- **lrc_bloomfilter_numhash N**
 Number of hash functions, an integer from 1 to 8. The default is 3.

- **lrc_bloomfilter_ratio N**
 Size of the Bloom filter as a multiple of the number of LFNs in the LRC database. Too small a value will generate too many false positives, too large wastes memory and network bandwidth.

Note: An LRC server can update some RLIs with Bloom filters, and others with LFNs. However an RLI server can only be updated using one method, and an RLI acting as a source for updates can only send the type of updates that it receives.

Log Messages

`globus-rls-server` uses syslog to log errors and other information (facility `LOG_DAEMON`) when it's running in normal (daemon) mode.

If the `-d` option (debug) is specified, then log messages are written to stdout.

Signals

The server will reread its configuration file if it receives a `HUP` signal. It will wait for all current requests to complete and shut down cleanly if sent any of the following signals: `INT`, `QUIT` or `TERM`.

Options (globus-rls-server)

The following table describes the command line options available for globus-rls-server:
Table 14. Options for globus-rls-server

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-B update_bf_int</td>
<td>Interval between RLI updates when using Bloom filters.</td>
</tr>
<tr>
<td>-b maxbackoff</td>
<td>Maximum time (in seconds) that globus-rls-server will attempt to reopen the socket it listens on after an I/O error.</td>
</tr>
<tr>
<td>-C rlscertfile</td>
<td>Name of the X.509 certificate file that identifies the server; sets environment variable X509_USER_CERT.</td>
</tr>
<tr>
<td>-c confilce</td>
<td>Name of the configuration file for the server.</td>
</tr>
<tr>
<td>-d</td>
<td>Enables debugging. The server will not detach from the controlling terminal, and log messages will be written to stdout rather than syslog. For additional logging verbosity set the loglevel (see the -L option) to higher values.</td>
</tr>
<tr>
<td>-e rli_expire_int</td>
<td>Interval (seconds) at which an RLI server should expire stale entries.</td>
</tr>
<tr>
<td>-F lrc_update_factor</td>
<td>If lrc_update_immediate mode is on, and the LRC server is in sync with an RLI server (an LRC and RLI are synced if there have been no failed updates since the last full soft state update), then the interval between RLI updates for this server (update_ll_int) is multiplied by lrc_update_factor.</td>
</tr>
<tr>
<td>-f maxfreethreads</td>
<td>Maximum number of idle threads the server will leave running. Excess threads are terminated.</td>
</tr>
<tr>
<td>-I true</td>
<td>false</td>
</tr>
<tr>
<td>-i idletimeout</td>
<td>Seconds after which idle client connections are timed out.</td>
</tr>
<tr>
<td>-K rlskeyfile</td>
<td>Name of the X.509 key file. Sets environment variable X509_USER_KEY.</td>
</tr>
<tr>
<td>-L loglevel</td>
<td>Sets the log level. By default this is 0, which means only errors will be logged. Higher values mean more verbose logging.</td>
</tr>
<tr>
<td>-l true</td>
<td>false</td>
</tr>
<tr>
<td>-M maxconnections</td>
<td>Maximum number of active connections. It should be small enough to prevent the server from running out of open file descriptors. The default value is 100.</td>
</tr>
<tr>
<td>-m maxthreads</td>
<td>Maximum number of threads server will start up to support simultaneous requests.</td>
</tr>
<tr>
<td>-N</td>
<td>Disables authentication checking. This option is intended for debugging. Clients should use the URL RLSN://host to disable authentication on the client side.</td>
</tr>
<tr>
<td>-o update_buftime</td>
<td>LRC to RLI updates are buffered until either the buffer is full or this much time (in seconds) has elapsed since the last update. The default value is 30.</td>
</tr>
<tr>
<td>-p pidfiledir</td>
<td>Directory where PID files should be written.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>-r</td>
<td>Configures whether the server is an RLI server. The default value is false.</td>
</tr>
<tr>
<td>-S rli_expire_stale</td>
<td>Interval (in seconds) after which entries in the RLI database are considered stale (presumably because they were deleted in the LRC). Stale entries are not returned in queries.</td>
</tr>
<tr>
<td>-s startthreads</td>
<td>Number of threads to start up initially.</td>
</tr>
<tr>
<td>-t timeout</td>
<td>Timeout (in seconds) for calls to other RLS servers (in other words, for LRC calls to send an update to an RLI). A value of 0 disables timeouts. The default value is 30.</td>
</tr>
<tr>
<td>-U myurl</td>
<td>URL for this server.</td>
</tr>
<tr>
<td>-u update_ll_int</td>
<td>Interval (in seconds) between lfn-list LRC to RLI updates.</td>
</tr>
<tr>
<td>-v</td>
<td>Shows version and exits.</td>
</tr>
</tbody>
</table>
GRAM5 Commands
Name

globusrun -- Execute and manage jobs via GRAM

globusrun [-p -parse]
{ -f RSL_FILENAME } -file RSL_FILENAME | RSL_SPECIFICATION

globusrun [-n] [-no-interrupt]
{ -r RESOURCE_CONTACT } -resource RESOURCE_CONTACT
{ -a -authenticate-only }

globusrun [-n] [-no-interrupt]
{ -r RESOURCE_CONTACT } -resource RESOURCE_CONTACT
{ -j -jobmanager-version }

globusrun [-n] [-no-interrupt] { -k -kill } { JOB_ID }

globusrun { -status } { JOB_ID }

{ -r RESOURCE_CONTACT } -resource RESOURCE_CONTACT
{ -f RSL_FILENAME } -file RSL_FILENAME | RSL_SPECIFICATION

Description

The **globusrun** program for submits and manages jobs run on a local or remote job host. The jobs are controlled by the **globus-job-manager** program which interfaces with a local resource manager that schedules and executes the job.

The **globusrun** program can be run in a number of different modes chosen by command-line options.

When **-help**, **-usage**, **-version**, or **-versions** command-line options are used, **globusrun** will print out diagnostic information and then exit.

When the **-p** or **-parse** command-line option is present, **globusrun** will verify the syntax of the RSL specification and then terminate. If the syntax is valid, **globusrun** will print out the string "RSL Parsed Successfully..." and exit with a zero exit code; otherwise, it will print an error message and terminate with a non-zero exit code.

When the **-a** or **-authenticate-only** command-line option is present, **globusrun** will verify that the service named by **RESOURCE_CONTACT** exists and the client’s credentials are granted permission to access that service. If authentication is successful, **globusrun** will display the string "GRAM Authentication test successful" and exit with a zero exit code; otherwise, it will print an explanation of the problem and will with a non-zero exit code.

When the **-j** or **-jobmanager-version** command-line option is present, **globusrun** will attempt to determine the software version that the service named by **RESOURCE_CONTACT** is running. If successful, it will display both the Toolkit version and the Job Manager package version and exit with a zero exit code; otherwise, it will print an explanation of the problem and will with a non-zero exit code.

When the **-k** or **-kill** command-line option is present, **globusrun** will attempt to terminate the job named by **JOB_ID**. If successful, **globusrun** will exit with zero; otherwise it will display an explanation of the problem and exit with a non-zero exit code.

When the **-y** or **-refresh-proxy** command-line option is present, **globusrun** will attempt to delegate a new X.509 proxy to the job manager which is managing the job named by **JOB_ID**. If successful, **globusrun** will exit with zero; otherwise it will display an explanation of the problem and exit with a non-zero exit code. This behavior can be modified by the **-full-proxy** or **-D** command-line options to enable full proxy delegation. The default is limited proxy delegation.
When the `-status` command-line option is present, `globusrun` will attempt to determine the current state of the job. If successful, the state will be printed to standard output and `globusrun` will exit with a zero exit code; otherwise, a description of the error will be displayed and it will exit with a non-zero exit code.

Otherwise, `globusrun` will submit the job to a GRAM service. By default, `globusrun` waits until the job has terminated or failed before exiting, displaying information about job state changes and at exit time, the job exit code if it is provided by the GRAM service.

The `globusrun` program can also function as a GASS file server to allow the `globus-job-manager` program to stage files to and from the machine on which `globusrun` is executed to the GRAM service node. This behavior is controlled by the `-s`, `-o`, and `-w` command-line options.

Jobs submitted by `globusrun` can be monitored interactively or detached. To have `globusrun` detach from the GRAM service after submitting the job, use the `-b` or `-F` command-line options.

Options

The full set of options to `globusrun` consist of:

- `-help`
 Display a help message to standard error and exit.

- `-usage`
 Display a one-line usage summary to standard error and exit.

- `-version`
 Display the software version of `globusrun` to standard error and exit.

- `-versions`
 Display the software version of all modules used by `globusrun` (including DiRT information) to standard error and then exit.

- `-p`, `-parse`
 Do a parse check on the job specification and print diagnostics. If a parse error occurs, `globusrun` exits with a non-zero exit code.

- `-f RSL_FILENAME`, `-file RSL_FILENAME`
 Read job specification from the file named by `RSL_FILENAME`.

- `-n`, `-no-interrupt`
 Disable handling of the `SIGINT` signal, so that the interrupt character (typically `Control-C`) causes `globusrun` to terminate without canceling the job.

- `-r RESOURCE_CONTACT`, `-resource RESOURCE_CONTACT`
 Submit the request to the resource specified by `RESOURCE_CONTACT`. A resource may be specified in the following ways:

 - `HOST`
 - `HOST:PORT`
 - `HOST:PORT/SERVICE`
 - `HOST/SERVICE`
 - `HOST:SERVICE`
 - `HOST::SUBJECT`
 - `HOST:PORT:SUBJECT`
 - `HOST:SERVICE:SUBJECT`
-j, -jobmanager-version

Print the software version being run by the service running at RESOURCE_CONTACT.

-k JOB_ID, -kill JOB_ID

Kill the job named by JOB_ID.

-D, -full-proxy

Delegate a full impersonation proxy to the service. By default, a limited proxy is delegated when needed.

-y, -refresh-proxy

Delegate a new proxy to the service processing JOB_ID.

-status

Display the current status of the job named by JOB_ID.

-q, -quiet

Do not display job state change or exit code information.

-o, -output-enable

Start a GASS server within the globusrun application that allows access to its standard output and standard error streams only. Also, augment the RSL_SPECIFICATION with a definition of the GLOBUSRUN_GASS_URL RSL substitution and add stdout and stderr clauses which redirect the output and error streams of the job to the output and error streams of the interactive globusrun command. If this is specified, then globusrun acts as though the -q were also specified.

-s, -server

Start a GASS server within the globusrun application that allows access to its standard output and standard error streams for writing and any file local the the globusrun invocation for reading. Also, augment the RSL_SPECIFICATION with a definition of the GLOBUSRUN_GASS_URL RSL substitution and add stdout and stderr clauses which redirect the output and error streams of the job to the output and error streams of the interactive globusrun command. If this is specified, then globusrun acts as though the -q were also specified.

-w, -write-allow

Start a GASS server within the globusrun application that allows access to its standard output and standard error streams for writing and any file local the the globusrun invocation for reading or writing. Also, augment the RSL_SPECIFICATION with a definition of the GLOBUSRUN_GASS_URL RSL substitution and add stdout and stderr clauses which redirect the output and error streams of the job to the output and error streams of the interactive globusrun command. If this is specified, then globusrun acts as though the -q were also specified.

-b, -batch

Terminate after submitting the job to the GRAM service. The globusrun program will exit after the job hits any of the following states: PENDING, ACTIVE, FAILED, or DONE. The GASS-related options can be used to stage input files, but standard output, standard error, and file staging after the job completes will not be processed.

-F, -fast-batch

Terminate after submitting the job to the GRAM service. The globusrun program will exit after it receives a reply from the service. The JOB_ID will be displayed to standard output before terminating so that the job can be checked with the
-status command-line option or modified by the -refresh-proxy or
-kill command-line options.

-d, -dryrun

Submit the job with the dryrun attribute set to true. When this is done, the job
manager will prepare to start the job but start short of submitting it to the service.
This can be used to detect problems with the RSL_SPECIFICATION.

Environment

If the following variables affect the execution of globusrun

X509_USER_PROXY Path to proxy credential.

X509_CERT_DIR Path to trusted certificate directory.

Bugs

The globusrun program assumes any failure to contact the job means the job has terminated. In fact, this may be due
to the globus-job-manager program exiting after all jobs it is managing have reached the DONE or FAILED states.
In order to reliably detect job termination, the two_phase RSL attribute should be used.

See Also

globus-job-submit(1), globus-job-run(1), globus-job-clean(1), globus-job-get-output(1), globus-job-cancel(1)
Name

globus-job-cancel -- Cancel a GRAM batch job

globus-job-cancel [-f | -force] [-q | -quiet] JOBID

Description

The globus-job-cancel program cancels the job named by JOBID. Any cached files associated with the job will remain until globus-job-clean is executed for the job.

By default, globus-job-cancel prompts the user prior to canceling the job. This behavior can be overridden by specifying the -f or -force command-line options.

Options

The full set of options to globus-job-cancel are:

- help, -h, -help Display a help message to standard error and exit.
- usage, -u, -usage Display a help message to standard error and exit.
- version, -v, -version Display the software version of the globus-job-cancel program to standard output.
- version, -version Display the software version of the globus-job-cancel program including DiRT information to standard output.
- force, -f, --force Do not prompt to confirm job cancel and clean-up.
- quiet, -q, --quiet Do not print diagnostics for successful cancel. Implies -f

ENVIRONMENT

If the following variables affect the execution of globus-job-cancel.

X509_USER_PROXY Path to proxy credential.
X509_CERT_DIR Path to trusted certificate directory.
Name

globus-job-clean -- Cancel and clean up a GRAM batch job

globus-job-clean [-help][-usage][-version][-versions]

Description

The **globus-job-clean** program cancels the job named by **JOBID** if it is still running, and then removes any cached files on the GRAM service node related to that job. In order to do the file cleanup, it submits a job which removes the cache files. By default this cleanup job is submitted to the default GRAM resource running on the same host as the job. This behavior can be controlled by specifying a resource manager contact string as the parameter to the -r or -resource option.

By default, **globus-job-clean** prompts the user prior to canceling the job. This behavior can be overridden by specifying the -f or -force command-line options.

Options

The full set of options to **globus-job-clean** are:

- **-help, -usage** Display a help message to standard error and exit.
- **-version** Display the software version of the **globus-job-clean** program to standard output.
- **-version** Display the software version of the **globus-job-clean** program including DiRT information to standard output.
- **-resource RESOURCE, -r RESOURCE** Submit the clean-up job to the resource named by **RESOURCE** instead of the default GRAM service on the same host as the job contact.
- **-force, -f** Do not prompt to confirm job cancel and clean-up.
- **-quiet, -q** Do not print diagnostics for successful clean-up. Implies -f

ENVIRONMENT

If the following variables affect the execution of **globus-job-clean**.

X509_USER_PROXY Path to proxy credential.

X509_CERT_DIR Path to trusted certificate directory.
Name

globus-job-get-output -- Retrieve the output and error streams from a GRAM job

globus-job-get-output [-r RESOURCE] [-resource RESOURCE]
[-out | -err] [-t LINES | -tail LINES] [-follow LINES | -f LINES] JOBID

globus-job-get-output [-help | -usage | -version | -versions]

Description

The **globus-job-get-output** program retrieves the output and error streams of the job named by JOBID. By default, **globus-job-get-output** will retrieve all output and error data from the job and display them to its own output and error streams. Other behavior can be controlled by using command-line options. The data retrieval is implemented by submitting another job which simply displays the contents of the first job’s output and error streams. By default this retrieval job is submitted to the default GRAM resource running on the same host as the job. This behavior can be controlled by specifying a particular resource manager contact string as the RESOURCE parameter to the \-r or \-resource option.

Options

The full set of options to **globus-job-get-output** are:

- **-help, -usage** Display a help message to standard error and exit.
- **-version** Display the software version of the **globus-job-get-output** program to standard output.
- **-version** Display the software version of the **globus-job-get-output** program including DiRT information to standard output.
- **-resource RESOURCE, -r RESOURCE** Submit the retrieval job to the resource named by RESOURCE instead of the default GRAM service on the same host as the job contact.
- **-out** Retrieve only the standard output stream of the job. The default is to retrieve both standard output and standard error.
- **-err** Retrieve only the standard error stream of the job. The default is to retrieve both standard output and standard error.
- **-tail LINES, -t LINES** Print only the last LINES count lines of output from the data streams being retrieved. By default, the entire output and error file data is retrieved. This option can not be used along with the \-f or \-follow options.
- **-follow LINES, -f LINES** Print the last LINES count lines of output from the data streams being retrieved and then wait until canceled, printing any subsequent job output that occurs. By default, the entire output and error file data is retrieved. This option can not be used along with the \-t or \-tail options.

ENVIRONMENT

If the following variables affect the execution of **globus-job-get-output**.

X509_USER_PROXY Path to proxy credential.
X509_CERT_DIR Path to trusted certificate directory.

BUGS

The `-f` and `-follow` don’t work in GRAM5.
Name
globus-job-run -- Execute a job using GRAM

globus-job-run [-dumpsl] [-dryrun] [-verify]
[-file ARGUMENT_FILE]
SERVICE_CONTACT
[-np PROCESSES | -count PROCESSES]
[-m MAX_TIME | -maxtime MAX_TIME]
[-p PROJECT | -project PROJECT]
[-q QUEUE | -queue QUEUE]
[-l | -s] EXECUTABLE [ARGUMENT...]

Description

The globus-job-run program constructs a job description from its command-line options and then submits the job to the GRAM service running at SERVICE_CONTACT. The executable and arguments to the executable are provided on the command-line after all other options. Note that the -dumpsl, -dryrun, -verify, and -file command-line options must occur before the first non-option argument, the SERVICE_CONTACT.

The globus-job-run provides similar functionality to globusrun in that it allows interactive start-up of GRAM jobs. However, unlike globusrun, it uses command-line parameters to define the job instead of RSL expressions.

Options

The full set of options to globus-job-run are:

- help, -usage
 Display a help message to standard error and exit.

- version
 Display the software version of the globus-job-run program to standard output.

- version
 Display the software version of the globus-job-run program including DiRT information to standard output.

- dumpsl
 Translate the command-line options to globus-job-run into an RSL expression that can be used with tools such as globusrun.

- dryrun
 Submit the job request to the GRAM service with the dryrun option enabled. When this option is used, the GRAM service prepares to execute the job but stops before submitting the job to the LRM. This can be used to diagnose some problems such as missing files.

- verify
 Submit the job request to the GRAM service with the dryrun option enabled and then without it enabled if the dryrun is successful.

- file ARGUMENT_FILE
 Read additional command-line options from ARGUMENT_FILE.

- np PROCESSES, -count PROCESSES
 Start PROCESSES instances of the executable as a single job.
Schedule the job to run for a maximum of \texttt{MAX_TIME} minutes.

Request that the job use the allocation \texttt{PROJECT} when submitting the job to the LRM.

Request that the job be submitted to the LRM using the named \texttt{QUEUE}.

Run the job in the directory named by \texttt{DIRECTORY}. Input and output files will be interpreted relative to this directory. This directory must exist on the file system on the LRM-managed resource. If not specified, the job will run in the home directory of the user the job is running as.

Define an environment variable named by \texttt{NAME} with the value \texttt{VALUE} in the job environment. This option may be specified multiple times to define multiple environment variables.

Use the file named by \texttt{STDIN_FILE} as the standard input of the job. If the \texttt{-l} option is specified, then this file is interpreted to be on a file system local to the LRM. If the \texttt{-s} option is specified, then this file is interpreted to be on the file system where \texttt{globus-job-run} is being executed, and the file will be staged via GASS. If neither is specified, the local behavior is assumed.

Use the file named by \texttt{STDOUT_FILE} as the destination for the standard output of the job. If the \texttt{-l} option is specified, then this file is interpreted to be on a file system local to the LRM. If the \texttt{-s} option is specified, then this file is interpreted to be on the file system where \texttt{globus-job-run} is being executed, and the file will be staged via GASS. If neither is specified, the local behavior is assumed.

Use the file named by \texttt{STDERR_FILE} as the destination for the standard error of the job. If the \texttt{-l} option is specified, then this file is interpreted to be on a file system local to the LRM. If the \texttt{-s} option is specified, then this file is interpreted to be on the file system where \texttt{globus-job-run} is being executed, and the file will be staged via GASS. If neither is specified, the local behavior is assumed.

Add a set of custom RSL attributes described by \texttt{RSL_CLAUSE} to the job description. The clause must be an RSL conjunction and may contain one or more attributes. This can be used to include attributes which can not be defined by other command-line options of \texttt{globus-job-run}.

When included outside the context of \texttt{-stdin}, \texttt{-stdout}, or \texttt{-stderr} command-line options, \texttt{-l} option alters the interpretation of the executable path. If the \texttt{-l} option is specified, then the executable is interpreted to be on a file system local to the LRM.

When included outside the context of \texttt{-stdin}, \texttt{-stdout}, or \texttt{-stderr} command-line options, \texttt{-s} option alters the interpretation of the executable path. If the \texttt{-s} option is specified, then the executable is interpreted to be on the file system where \texttt{globus-job-run} is being executed, and the file will be staged via GASS. If neither is specified, the local behavior is assumed.

\textbf{ENVIRONMENT}

If the following variables affect the execution of \texttt{globus-job-run}.
globus-job-run

X509_USER_PROXY Path to proxy credential.

X509_CERT_DIR Path to trusted certificate directory.

See Also

globusrun(1), globus-job-submit(1), globus-job-clean(1), globus-job-get-output(1), globus-job-cancel(1)
Name

globus-job-status -- Check the status of a GRAM5 job

globus-job-status [JOBID]

Description

The **globus-job-status** program checks the status of a GRAM job by sending a status request to the job manager contact for that job specified by the *JOBID* parameter. If successful, it will print the job status to standard output. The states supported by **globus-job-status** are:

- **PENDING** The job has been submitted to the LRM but has not yet begun execution.
- **ACTIVE** The job has begun execution.
- **FAILED** The job has failed.
- **SUSPENDED** The job is currently suspended by the LRM.
- **DONE** The job has completed.
- **UNSUBMITTED** The job has been accepted by GRAM, but not yet submitted to the LRM.
- **STAGE_IN** The job has been accepted by GRAM and is currently staging files prior to being submitted to the LRM.
- **STAGE_OUT** The job has completed execution and is currently staging files from the service node to other http, GASS, or GridFTP servers.

Options

The full set of options to **globus-job-status** are:

- **-help, --usage** Display a help message to standard error and exit.
- **-version** Display the software version of the **globus-job-status** program to standard output.
- **-versions** Display the software version of the **globus-job-status** program including DiRT information to standard output.

ENVIRONMENT

If the following variables affect the execution of **globus-job-status**.

X509_USER_PROXY Path to proxy credential.

X509_CERT_DIR Path to trusted certificate directory.
Bugs

The `globus-job-status` program cannot distinguish between the case of the job manager terminating for any reason and the job being in the `DONE` state.

See Also

globusrun(1)
Name

globus-job-submit -- Submit a batch job using GRAM

globus-job-submit [-dumpsl] [-dryrun] [-verify]
[-file ARGUMENT_FILE]
SERVICE_CONTACT
[-np PROCESSES] [-count PROCESSES]
[-m MAX_TIME] [-maxtime MAX_TIME]
[-p PROJECT] [-project PROJECT]
[-q QUEUE] [-queue QUEUE]
[-d DIRECTORY] [-directory DIRECTORY]
[-env NAME=VALUE]...
[-x RSL_CLAUSE]
[-l | -s] EXECUTABLE [ARGUMENT...]

Description

The globus-job-submit program constructs a job description from its command-line options and then submits the job to the GRAM service running at SERVICE_CONTACT. The executable and arguments to the executable are provided on the command-line after all other options. Note that the -dumpsl, -dryrun, -verify, and -file command-line options must occur before the first non-option argument, the SERVICE_CONTACT.

The globus-job-submit provides similar functionality to globusrun in that it allows batch submission of GRAM jobs. However, unlike globusrun, it uses command-line parameters to define the job instead of RSL expressions.

To retrieve the output and error streams of the job, use the program globus-job-get-output. To reclaim resources used by the job by deleting cached files and job state, use the program globus-job-clean. To cancel a batch job submitted by globus-job-submit, use the program globus-job-cancel.

Options

The full set of options to globus-job-submit are:

- help, -usage
 Display a help message to standard error and exit.

- version
 Display the software version of the globus-job-submit program to standard output.

- versions
 Display the software version of the globus-job-submit program including DiRT information to standard output.

- dumpsl
 Translate the command-line options to globus-job-submit into an RSL expression that can be used with tools such as globusrun.

- dryrun
 Submit the job request to the GRAM service with the dryrun option enabled. When this option is used, the GRAM service prepares to execute the job but stops before submitting the job to the LRM. This can be used to diagnose some problems such as missing files.

- verify
 Submit the job request to the GRAM service with the dryrun option enabled and then without it enabled if the dryrun is successful.
-file `ARGUMENT_FILE` Read additional command-line options from `ARGUMENT_FILE`.

-`np` `PROCESSES`, `-count PROCESSES` Start `PROCESSES` instances of the executable as a single job.

-m `MAX_TIME`, `-maxtime MAX_TIME` Schedule the job to run for a maximum of `MAX_TIME` minutes.

-p `PROJECT`, `-project PROJECT` Request that the job use the allocation `PROJECT` when submitting the job to the LRM.

-q `QUEUE`, `-queue QUEUE` Request that the job be submitted to the LRM using the named `QUEUE`.

-d `DIRECTORY`, `-directory DIRECTORY` Run the job in the directory named by `DIRECTORY`. Input and output files will be interpreted relative to this directory. This directory must exist on the file system on the LRM-managed resource. If not specified, the job will run in the home directory of the user the job is running as.

-env `NAME=VALUE` Define an environment variable named by `NAME` with the value `VALUE` in the job environment. This option may be specified multiple times to define multiple environment variables.

-stdin [-l | -s] `STDIN_FILE` Use the file named by `STDIN_FILE` as the standard input of the job. If the `-l` option is specified, then this file is interpreted to be on a file system local to the LRM. If the `-s` option is specified, then this file is interpreted to be on the file system where `globus-job-submit` is being executed, and the file will be staged via GASS. If neither is specified, the local behavior is assumed.

-stdout [-l | -s] `STDOUT_FILE` Use the file named by `STDOUT_FILE` as the destination for the standard output of the job. If the `-l` option is specified, then this file is interpreted to be on a file system local to the LRM. If the `-s` option is specified, then this file is interpreted to be on the file system where `globus-job-submit` is being executed, and the file will be staged via GASS. If neither is specified, the local behavior is assumed.

-stderr [-l | -s] `STDERR_FILE` Use the file named by `STDERR_FILE` as the destination for the standard error of the job. If the `-l` option is specified, then this file is interpreted to be on a file system local to the LRM. If the `-s` option is specified, then this file is interpreted to be on the file system where `globus-job-submit` is being executed, and the file will be staged via GASS. If neither is specified, the local behavior is assumed.

-x `RSL_CLAUSE` Add a set of custom RSL attributes described by `RSL_CLAUSE` to the job description. The clause must be an RSL conjunction and may contain one or more attributes. This can be used to include attributes which can not be defined by other command-line options of `globus-job-submit`.

-`l` When included outside the context of `-stdin`, `-stdout`, or `-stderr` command-line options, `-l` option alters the interpretation of the executable path. If the `-l` option is specified, then the executable is interpreted to be on a file system local to the LRM.

-`s` When included outside the context of `-stdin`, `-stdout`, or `-stderr` command-line options, `-s` option alters the interpretation of the executable path. If the `-s` option is specified, then the executable is interpreted to be on the file
system where **globus-job-run** is being executed, and the file will be staged via GASS. If neither is specified, the local behavior is assumed.

ENVIRONMENT

If the following variables affect the execution of **globus-job-submit**.

- `X509_USER_PROXY` Path to proxy credential.
- `X509_CERT_DIR` Path to trusted certificate directory.

See Also

`globusrun(1), globus-job-run(1), globus-job-clean(1), globus-job-get-output(1), globus-job-cancel(1)`
Name

globus-personal-gatekeeper -- Manage a user's personal gatekeeper daemon

[-log [=DIRECTORY]] [-seg] [-acctfile ACCOUNTING_FILE]
globus-personal-gatekeeper [-killall] [-kill]

Description

The globus-personal-gatekeeper command is a utility which manages a gatekeeper and job manager service for a single user. Depending on the command-line arguments it will operate in one of several modes. In the first set of arguments indicated in the synopsis, the program provides information about the globus-personal-gatekeeper command or about instances of the globus-personal-gatekeeper that are running currently. The second set of arguments indicated in the synopsis provide control over starting a new globus-personal-gatekeeper instance. The final set of arguments provide control for terminating one or more globus-personal-gatekeeper instances.

The -start mode will create a new subdirectory of $HOME/.globus and write the configuration files needed to start a globus-gatekeeper daemon which will invoke the globus-job-manager service when new authenticated connections are made to its service port. The globus-personal-gatekeeper then exits, printing the contact string for the new gatekeeper prefixed by GRAM contact: to standard output. In addition to the arguments described above, any arguments described in globus-job-manager(8) can be appended to the command-line and will be added to the job manager configuration for the service started by the globus-gatekeeper.

The new globus-gatekeeper will continue to run in the background until killed by invoking globus-personal-gatekeeper with the -kill or -killall argument. When killed, it will kill the globus-gatekeeper and globus-job-manager processes, remove state files and configuration data, and then exit. Jobs which are running when the personal gatekeeper is killed will continue to run, but their job directory will be destroyed so they may fail in the LRM.

The full set of command-line options to globus-personal-gatekeeper consists of:

- -help, -usage Print command-line option summary and exit
- -version Print software version
- -versions Print software version including DiRT information
- -list Print a list of all currently running personal gatekeepers. These entries will be printed one per line.
- -directory CONTACT Print the configuration directory for the personal gatekeeper with the contact string CONTACT.
- -debug Print additional debugging information when starting a personal gatekeeper. This option is ignored in other modes.
- -start Start a new personal gatekeeper process.
- -jmtype LRM Use LRM as the local resource manager interface. If not provided when starting a personal gatekeeper, the job manager will use the default fork LRM.
- -auditdir AUDIT_DIRECTORY Write audit report files to AUDIT_DIRECTORY. If not provided, the job manager will not write any audit files.
-port PORT

Listen for gatekeeper TCP/IP connections on the port PORT. If not provided, the gatekeeper will let the operating system choose.

-log[=DIRECTORY]

Write job manager log files to DIRECTORY. If DIRECTORY is omitted, the default of $HOME will be used. If this option is not present, the job manager will not write any log files.

-seg

Try to use the SEG mechanism to receive job state change information, instead of polling for these. These require either the system administrator or the user to run an instance of the globus-job-manager-event-generator program for the LRM specified by the -jmtype option.

-acctfile ACCOUNTING_FILE

Write gatekeeper accounting entries to ACCOUNTING_FILE. If not provided, no accounting records are written.

Examples

This example shows the output when starting a new personal gatekeeper which will schedule jobs via the lsf LRM, with debugging enabled.

% globus-personal-gatekeeper -start -jmtype lsf

verifying setup...
done.
GRAM contact: personal-grid.example.org:57846:/DC=org/DC=example/CN=Joe User

This example shows the output when listing the current active personal gatekeepers.

% globus-personal-gatekeeper -list

personal-grid.example.org:57846:/DC=org/DC=example/CN=Joe User

This example shows the output when querying the configuration directory for the above personal gatekeeper.

% globus-personal-gatekeeper -directory "personal-grid.example.org:57846:/DC=org/DC=example/CN=Joe User"

/home/juser/.globus/.personal-gatekeeper.personal-grid.example.org.1337

% globus-personal-gatekeeper -kill "personal-grid.example.org:57846:/DC=org/DC=example/CN=Joe User"

killing gatekeeper: "personal-grid.example.org:57846:/DC=org/DC=example/CN=Joe User"

See Also

globusrun(1), globus-job-manager(8), globus-gatekeeper(8)
Name

globus-gram-audit -- Load GRAM4 and GRAM5 audit records into a database

globus-gram-audit [--conf CONFIG_FILE] [--check] [--delete] [--audit-directory AUDITDIR]

Description

The **globus-gram-audit** program loads audit records to an SQL-based database. It reads $GLOBUS_LOCATION/etc/globus-job-manager.conf by default to determine the audit directory and then uploads all files in that directory that contain valid audit records to the database configured by the **globus_gram_job_manager_auditing_setup_scripts** package. If the upload completes successfully, the audit files will be removed.

The full set of command-line options to **globus-gram-audit** consist of:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--conf CONFIG_FILE</td>
<td>Use CONFIG_FILE instead of the default from the configuration file for audit database configuration.</td>
</tr>
<tr>
<td>--check</td>
<td>Check whether the insertion of a record was successful by querying the database after inserting the records. This is used in tests.</td>
</tr>
<tr>
<td>--delete</td>
<td>Delete audit records from the database right after inserting them. This is used in tests to avoid filling the database with test records.</td>
</tr>
<tr>
<td>--audit-directory DIR</td>
<td>Look for audit records in DIR, instead of looking in the directory specified in the job manager configuration. This is used in tests to control which records are loaded to the database and then deleted.</td>
</tr>
<tr>
<td>--query SQL</td>
<td>Perform the given SQL query on the audit database. This uses the database information from the configuration file to determine how to contact the database.</td>
</tr>
</tbody>
</table>

FILES

The **globus-gram-audit** uses the following files (paths relative to $GLOBUS_LOCATION).

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>etc/globus-gram-job-manager.conf</td>
<td>GRAM5 job manager configuration. It includes the default path to the audit directory</td>
</tr>
<tr>
<td>etc/globus-gram-audit.conf</td>
<td>Audit configuration. It includes the information needed to contact the audit database.</td>
</tr>
</tbody>
</table>
Name
globus-job-manager -- Execute and monitor jobs

Description

The globus-job-manager program is a service which starts and controls GRAM jobs which are executed by a local resource management system, such as LSF or Condor. The globus-job-manager program is typically started by the globus-gatekeeper program and not directly by a user. It runs until all jobs it is managing have terminated or its delegated credentials have expired.

Typically, users interact with the globus-job-manager program via client applications such as globusrun, globus-job-submit, or tools such as CoG jglobus or Condor-G.

The full set of command-line options to globus-job-manager consists of:

- **-help**
 Display a help message to standard error and exit

- **-type LRM**
 Execute jobs using the local resource manager named LRM.

- **-conf CONFIG_PATH**
 Read additional command-line arguments from the file CONFIG_PATH. If present, this must be the first command-line argument to the globus-job-manager program.

- **-globus-host-manufacturer MANUFACTURER**
 Indicate the manufacturer of the system which the jobs will execute on. This parameter sets the value of the $ (GLOBUS_HOST_MANUFACTURER) RSL substitution to MANUFACTURER

- **-globus-host-cputype CPUTYPE**
 Indicate the CPU type of the system which the jobs will execute on. This parameter sets the value of the $ (GLOBUS_HOST_CPUTYPE) RSL substitution to CPUTYPE

- **-globus-host-osname OSNAME**
 Indicate the operating system type of the system which the jobs will execute on. This parameter sets the value of the $ (GLOBUS_HOST_OSNAME) RSL substitution to OSNAME

- **-globus-host-osversion OSVERSION**
 Indicate the operating system version of the system which the jobs will execute on. This parameter sets the value of the $ (GLOBUS_HOST_OSVERSION) RSL substitution to OSVERSION

- **-globus-gatekeeper-host HOST**
 Indicate the host name of the machine which the job was submitted to. This parameter sets the value of the $ (GLOBUS_GATEKEEPER_HOST) RSL substitution to HOST
-globus-gatekeeper-port PORT

Indicate the TCP port number of gatekeeper to which jobs are submitted to. This parameter sets the value of the $(GLOBUS_GATEKEEPER_PORT) RSL substitution to PORT.

-globus-gatekeeper-subject SUBJECT

Indicate the X.509 identity of the gatekeeper to which jobs are submitted to. This parameter sets the value of the $(GLOBUS_GATEKEEPER_SUBJECT) RSL substitution to SUBJECT.

-home GLOBUS_LOCATION

Indicate the path where the Globus Toolkit(r) is installed on the service node. This is used by the job manager to locate its support and configuration files.

-target-globus-location TARGET_GLOBUS_LOCATION

Indicate the path where the Globus Toolkit(r) is installed on the execution host. If this is omitted, the value specified as a parameter to -home is used. This parameter sets the value of the $(GLOBUS_LOCATION) RSL substitution to TARGET_GLOBUS_LOCATION.

-history HISTORY_DIRECTORY

Configure the job manager to write job history files to HISTORY_DIRECTORY. These files are described in the FILES section below.

-scratch-dir-base SCRATCH_DIRECTORY

Configure the job manager to use SCRATCH_DIRECTORY as the default scratch directory root if a relative path is specified in the job RSL's scratch_dir attribute.

-enable-syslog

Configure the job manager to write log messages via syslog. Logging is further controlled by the argument to the -log-levels parameter described below.

-stdio-log LOG_DIRECTORY

Configure the job manager to write log messages to files in the LOG_DIRECTORY directory. Files will be named LOG_DIRECTORY/gram_YYYYMM-DD.log. Logging is further controlled by the argument to the -log-levels parameter described below. The LOG_DIRECTORY value can include variables derived from the job manager environment using the same syntax as RSL substitutions. For example, -stdio-log $(HOME) would cause each user's logs to be stored in their individual home directories.

-log-levels LEVELS

Configure the job manager to write log messages of certain levels to syslog and/or log files. The available log levels are FATAL, ERROR, WARN, INFO, DEBUG, and TRACE. Multiple values can be combined with the | character. The default value of logging when enabled is FATAL|ERROR.

-state-file-dir STATE_DIRECTORY

Configure the job manager to write state files to STATE_DIRECTORY. If not specified, the job manager uses the default of $GLOBUS_LOCATION/tmp/gram_job_state/. This directory must be writable by all users and be on a file system which supports POSIX advisory file locks.

-globus-tcp-port-range PORT_RANGE

Configure the job manager to restrict its TCP/IP communication to use ports in the range described by PORT_RANGE. This value is also made available in the job environment via the GLOBUS_TCP_PORT_RANGE environment variable.

-x509-cert-dir TRUSTED_CERTIFICATE_DIRECTORY

Configure the job manager to search TRUSTED_CERTIFICATE_DIRECTORY for its list of trusted CA certificates and their signing policies. This value is also made available in the job environment via the X509_CERT_DIR environment variable.
Configure the job manager to use the path `GASS_CACHE_DIRECTORY` for its temporary GASS-cache files. This value is also made available in the job environment via the `GLOBUS_GASS_CACHE_DEFAULT` environment variable.

Configure the job manager to assume it is using Kerberos for authentication instead of X.509 certificates. This disables some certificate-specific processing in the job manager.

Configure the job manager to define a set of environment variables in the job environment beyond those defined in the base job environment. The format of the parameter to this argument is a comma-separated sequence of `VAR=VAL` pairs, where `VAR` is the variable name and `VAL` is the variables value.

Configure the job manager to use the schedule event generator module named by `SEG_MODULE` to detect job state changes events from the local resource manager, in place of the less efficient polling operations used in GT2. To use this, one instance of the `globus-job-manager-event-generator` must be running to process events for the LRM into a generic format that the job manager can parse.

Configure the job manager to write audit records to the directory named by `AUDIT_DIRECTORY`. This records can be loaded into a database using the `globus-gram-audit` program.

Configure the job manager to use `TOOLKIT_VERSION` as the version for audit and usage stats records.

Configure the job manager to use `SERVICE_TAG` as a unique identifier to allow multiple GRAM instances to use the same job state directories without interfering with each other's jobs. If not set, the value `untagged` will be used.

Configure the job manager to disable file streaming. This is propagated to the LRM script interface but has no effect in GRAM5.

Disable sending of any usage stats data, even if `-usagestats-target` is present in the configuration.

Send usage packets to a data collection service for analysis. The `TARGET` string consists of a comma-separated list of `HOST:PORT` combinations, each containing an optional list of data to send. See Usage Stats Packets\(^1\) for more information about the tags. Special tag strings of `all` (which enables all tags) and `default` may be used, or a sequence of characters for the various tags.

Set the architecture specification for condor jobs to be `ARCH` in job classified ads generated by the GRAM5 condor LRM script. This is required for the condor LRM but ignored for all others.

Set the operating system specification for condor jobs to be `OS` in job classified ads generated by the GRAM5 condor LRM script. This is required for the condor LRM but ignored for all others.

\(^1\) http://confluence.globus.org/display/~bester/GRAM5+Usage+Stats+Packets
Environment

If the following variables affect the execution of `globus-job-manager`

HOME
User's home directory.

LOGNAME
User's name.

JOBMANAGER_SYSLOG_ID
String to prepend to syslog audit messages.

JOBMANAGER_SYSLOG_FAC
Facility to log syslog audit messages as.

JOBMANAGER_SYSLOG_LVL
Priority level to use for syslog audit messages.

GATEKEEPER_JM_ID
Job manager ID to be used in syslog audit records.

GATEKEEPER_PEER
Peer information to be used in syslog audit records

GLOBUS_ID
Credential information to be used in syslog audit records

GLOBUS_JOB_MANAGER_SLEEP
Time (in seconds) to sleep when the job manager is started. [For debugging purposes only]

GRID_SECURITY_HT-TP_BODY_FD
File descriptor of an open file which contains the initial job request and to which the initial job reply should be sent. This file descriptor is inherited from the `globus-gatekeeper`.

X509_USER_PROXY
Path to the X.509 user proxy which was delegated by the client to the `globus-gatekeeper` program to be used by the job manager.

GRID_SECURITY_CONTEXT_FD
File descriptor containing an exported security context that the job manager should use to reply to the client which submitted the job.

Files

$HOME/.globus/job/HOST-NAME/LRM.TAG.red
Job manager delegated user credential.

$HOME/.globus/job/HOST-NAME/LRM.TAG.lock
Job manager state lock file.

$HOME/.globus/job/HOST-NAME/LRM.TAG.pid
Job manager pid file.

$HOME/.globus/job/HOST-NAME/LRM.TAG.sock
Job manager socket for inter-job manager communications.

$HOME/.globus/job/HOST-NAME/JOB_ID/
Job-specific state directory.

$HOME/.globus/job/HOST-NAME/JOB_ID(stdin)
Standard input which has been staged from a remote URL.

$HOME/.globus/job/HOST-NAME/JOB_ID/stdout
Standard output which will be staged from a remote URL.
$HOME/.globus/job/HOST-NAME/JOB_ID/stderr
Standard error which will be staged from a remote URL.

$HOME/.globus/job/HOST-NAME/JOB_ID/x509_user_proxy
Job-specific delegated credential.

$GLOBUS_LOCATION/tmp/gram_job_state/job.HOST-NAME.JOB_ID
Job state file.

$GLOBUS_LOCATION/tmp/gram_job_state/job.HOST-NAME.JOB_ID.lock
Job state lock file. In most cases this will be a symlink to the job manager lock file.

$GLOBUS_LOCATION/etc/globus-job-manager.conf
Default location of the global job manager configuration file.

$GLOBUS_LOCATION/etc/grid-services/jobmanager-LRM
Default location of the LRM-specific gatekeeper configuration file.

See Also

globusrun(1), globus-gatekeeper(8), globus-personal-gatekeeper(1), globus-gram-audit(8)
Name

globus-job-manager-event-generator -- Create LRM-independent SEG files for the job manager to use

Description

The **globus-job-manager-event-generator** program is a utility which uses LRM-specific SEG parsers to generate a LRM-independent log file that a job manager instance can use to process job status change events. This program runs independently of all **globus-job-manager** instances so that only one process needs to deal with the LRM interface. The **globus-job-manager-event-generator** program can be run as a privileged user if required to interface with the LRM.

In order for **globus-job-manager-event-generator** to handle events for a particular LRM, the **globus_scheduler_event_generator_job_manager_setup** setup package must be configured after the LRM-specific setup package has been run. This can be forced by `gpt-postinstall-force` or running the command `cd $GLOBUS_LOCATION/setup/globus; ./setup-seg-job-manager.pl`.

The full set of command-line options to **globus-job-manager-event-generator** consists of:

- `-help` Print command-line option summary and exit.
- `-scheduler LRM` Process events for the local resource manager named by `LRM`.
- `-background` Run **globus-job-manager-event-generator** as a background process. It will fork a new process, print out its process ID and then the original process will terminate.
- `-pidfile PIDPATH` Write the process ID of an instance of **globus-job-manager-event-generator** to the file named by `PIDPATH`. This file can be used to kill or monitor the **globus-job-manager-event-generator** process.

Files

globus-job-manager-seg.conf Configuration file for **globus-job-manager-event-generator**. Each line consists of a string of the form `LRM_log_path=PATH`, which indicates the directory containing LRM-independent format SEG log files for the LRM. This file is created by the running the **globus_scheduler_event_generator_job_manager_setup** setup package.

See Also

globus-scheduler-event-generator(8), globus-job-manager(8)
GSI-OpenSSH Commands

The gsissh(1), gsiscp(1), and gsisftp(1) commands provide the same interfaces as the standard OpenSSH ssh, scp, and sftp commands, respectively, with the added ability to perform X.509 proxy credential authentication and delegation.
Name

gsissh -- Secure remote login

gsissh

Tool description

Use the gsissh command to securely login to a remote machine.

Command syntax

gsissh [-l login_name] hostname | user@hostname [command]
Name

gsiscp -- Secure remote file copy
gsiscp

Tool description

Use the gsiscp command to securely copy files to or from a remote machine.

Command syntax

gsiscp [-P port] [[user@]host1:]file1 [...] [[user@]host2:]destfile
Name

gsisftp -- Secure file transfer

gsisftp

Tool description

The *gsisftp* command provides an interactive interface for transferring files to and from remote machines.

Command syntax

gsisftp [[*user*@]*host*[:dir[/]]]
Glossary

B

Bloom filter Compression scheme used by the Replica Location Service (RLS) that is intended to reduce the size of soft state updates between Local Replica Catalogs (LRCs) and Replica Location Index (RLI) servers. A Bloom filter is a bit map that summarizes the contents of a Local Replica Catalog (LRC). An LRC constructs the bit map by applying a series of hash functions to each logical name registered in the LRC and setting the corresponding bits.

C

Certificate Authority (CA) An entity that issues certificates.

client A process that sends commands and receives responses. Note that in GridFTP, the client may or may not take part in the actual movement of data.

E

extended block mode (MODE E) MODE E is a critical GridFTP component because it allows for out of order reception of data. This in turn, means we can send the data down multiple paths and do not need to worry if one of the paths is slower than the others and the data arrives out of order. This enables parallelism and striping within GridFTP. In MODE E, a series of “blocks” are sent over the data channel. Each block consists of:

• an 8 bit flag field,
• a 64 bit field indicating the offset in the transfer,
• and a 64 bit field indicating the length of the payload,
• followed by length bytes of payload.

Note that since the offset and length are included in the block, out of order reception is possible, as long as the receiving side can handle it, either via something like a seek on a file, or via some application level buffering and ordering logic that will wait for the out of order blocks.

G

grid map file A file containing entries mapping certificate subjects to local user names. This file can also serve as a access control list for GSI enabled services and is typically found in /etc/grid-security/grid-mapfile. For more information see the Gridmap section here.
Local Replica Catalog (LRC) | Stores mappings between logical names for data items and the target names (often the physical locations) of replicas of those items. Clients query the LRC to discover replicas associated with a logical name. Also may associate attributes with logical or target names. Each LRC periodically sends information about its logical name mappings to one or more RLIs.

See also RLI.

logical file name | A unique identifier for the contents of a file.

physical file name | The address or the location of a copy of a file on a storage system.

proxy certificate | A short lived certificate issued using a EEC. A proxy certificate typically has the same effective subject as the EEC that issued it and can thus be used in its place. GSI uses proxy certificates for single sign on and delegation of rights to other entities.

For more information about types of proxy certificates and their compatibility in different versions of GT, see http://dev.globus.org/wiki/Security/ProxyCertTypes.

proxy credentials | The combination of a proxy certificate and its corresponding private key. GSI typically stores proxy credentials in /tmp/x509up_u<uid>, where <uid> is the user id of the proxy owner.

Replica Location Index (RLI) | Collects information about the logical name mappings stored in one or more Local Replica Catalogs (LRCs) and answers queries about those mappings. Each RLI periodically receives updates from one or more LRCs that summarize their contents.

RLS attribute | Descriptive information that may be associated with a logical or target name mapping registered in a Local Replica Catalog (LRC). Clients can query the LRC to discover logical names or target names that have specified RLS attributes.

server | A process that receives commands and sends responses to those commands. Since it is a server or service, and it receives commands, it must be listening on a port somewhere to receive the commands. Both FTP and GridFTP have IANA registered ports. For FTP it is port 21, for GridFTP it is port 2811. This is normally handled via inetd or xinetd on Unix variants. However, it is also possible to implement a daemon that listens on the specified port. This is described more fully in in the Architecture section of the GridFTP Developer's Guide.

stream mode (MODE S) | The only mode normally implemented for FTP is MODE S. This is simply sending each byte, one after another over the socket in order, with no application level
framing of any kind. This is the default and is what a standard FTP server will use. This is also the default for GridFTP.

In the simplest terms, a third party transfer moves a file between two GridFTP servers.

The following is a more detailed, programmatic description.

In a third party transfer, there are three entities involved. The client, who will only orchestrate, but not actually take place in the data transfer, and two servers one of which will be sending data to the other. This scenario is common in Grid applications where you may wish to stage data from a data store somewhere to a supercomputer you have reserved. The commands are quite similar to the client/server transfer. However, now the client must establish two control channels, one to each server. He will then choose one to listen, and send it the PASV command. When it responds with the IP/port it is listening on, the client will send that IP/port as part of the PORT command to the other server. This will cause the second server to connect to the first server, rather than the client. To initiate the actual movement of the data, the client then sends the RETR “filename” command to the server that will read from disk and write to the network (the “sending” server) and will send the STOR “filename” command to the other server which will read from the network and write to the disk (the “receiving” server).

See Also client/server transfer.