Performance Benchmark Information
Provider
Performance Benchmark Information Provider

Abstract

The basic idea of this Information Provider is to allow a set of performance benchmarks to be run and to aggregate the results of the test back into the WS MDS Index Service. To do this, each test must be configured separately, and each set of results will be placed in a separate Resource Property (RP). This simplifies the configuration and allows for easy client side querying of the results of an individual test. This information provider also includes a "Hello, World!" test that you should use alone to make sure that your environment is configured properly so that the other (more complicated) tests might have a chance of working as well.

You can download a PDF version of Performance Benchmark Information Provider information here¹.

¹ perf_benchmark.pdf
Table of Contents

1. Release Notes ... 1
 1. Component Overview .. 1
 2. Feature Summary ... 1
 3. Changes Summary .. 1
 4. Bug Fixes .. 1
 5. Known Problems ... 1
 6. Technology Dependencies .. 1
 7. Tested Platforms .. 2
 8. Backward Compatibility Summary ... 2
 9. Associated Standards .. 2
 10. For More Information .. 2

2. Reference Guide .. 3
 1. Overview .. 3
 2. Prerequisites .. 3
 3. Configuring .. 4
 4. Resource Properties ... 21
 5. Schema .. 21
 6. Security Considerations ... 21
 7. Testing ... 21
 8. Troubleshooting .. 21

Glossary ... 22
Chapter 1. GT 4.2.0 Release Notes: Performance Benchmark Information Provider

1. Component Overview

The basic idea of this Information Provider is to allow a set of performance benchmarks to be run and to aggregate the results of the test back into the WS MDS Index Service. To do this, each test must be configured separately, and each set of results will be placed in a separate Resource Property (RP). This simplifies the configuration and allows for easy client side querying of the results of an individual test. This information provider also includes a "Hello, World!" test that you should use alone to make sure that your environment is configured properly so that the other (more complicated) tests might have a chance of working as well.

2. Feature Summary

• [TODO: list new features of this info provider for this release]

3. Changes Summary

This is a new information provider for GT 4.2.

4. Bug Fixes

There are no fixed bugs for this information provider.

5. Known Problems

The following problems and limitations are known to exist for WS MDS GKrellm Service at the time of the 4.2.0 release:

5.1. Limitations

• [list]

5.2. Known Bugs

• There are currently no bugs for this information provider.

6. Technology Dependencies

The Index Service depends on the following GT components:

• Java WS Core

The Index Service depends on the following 3rd party software:
All of the systems that the user wishes to observe via this information provider must be running gkrellmd version 2.2.7 or greater. More information on gkrellmd can be found at: http://www.gkrellm.net/

7. Tested Platforms

Tested Platforms for WS-MDS Index Service:

- Linux on i386
- Linux on x86_64

Tested containers for this Information Provider:

- Java WS Core container

8. Backward Compatibility Summary

This is a new information provider with this version.

9. Associated Standards

Associated standards for this Information Provider:

- [list]

10. For More Information

See Chapter 2, GT 4.2.0: Performance Benchmark Information Provider Reference for more information about this information provider.
Chapter 2. GT 4.2.0: Performance Benchmark Information Provider Reference

1. Overview

The basic idea of this Information Provider is to allow a set of performance benchmarks to be run and to aggregate the results of the test back into the WS MDS Index Service. To do this, each test must be configured separately, and each set of results will be placed in a separate Resource Property (RP). This simplifies the configuration and allows for easy client side querying of the results of an individual test. This information provider also includes a "Hello, World!" test that you should use alone to make sure that your environment is configured properly so that the other (more complicated) tests might have a chance of working as well.

REQUIRED: indicate which module this provider is implemented with (usefulrp or aggregator) and add link.

2. Prerequisites

1. A cluster that has a shared file system between the login (or job submission) nodes and the backend (compute) nodes. For example, all backend (compute) nodes must be able to find a common file on some (arbitrary) mount point such as /nfs/shared/foo. As long as the program and output file can be run and written, respectively, there should be no trouble using this software.

2. A working GT4 installation with a configured WS-GRAM installation so that jobs can be submitted (via PBS, or Condor). A single running container is required for this information provider, and the job is submitted to this container.

To satisfy this requirement, you should be able to have a container running on the login node and be able to run a command such as the following on the command line without error:

$GLOBUS_LOCATION/bin/globusrun-ws -submit -Ft PBS -F \
 https://MYHOST:MYPORT/wsrf/services/ManagedJobFactoryService \
 -c /bin/true

The output should look similar to this:

Submitting job...Done.
Job ID: uuid:7790abec-e5d9-11da-b93a-0014221d2259
Termination time: 05/18/2006 19:15 GMT
Current job state: Pending
Current job state: Active
Current job state: CleanUp
Current job state: Done
Destroying job...Done.

If this does not work without error on your system (where PBS should have been substituted for the scheduler installed on your system), please consult your system administrator or the WS-GRAM documentation located at: http://www-unix.globus.org/toolkit/docs/4.0/execwsgram/user-index.html
3. 3) A working and configured MPI installation on the backend nodes.

4. 4) An installation of the following programs that are accessible (i.e. can be run) from the backend (compute) nodes:

 MPPTTEST: http://www-unix.mcs.anl.gov/mpi/mpptest/
 STREAM: http://www.cs.virginia.edu/stream/

3. Configuring

The following configuration is required for this information provider:

1. You must have the $GLOBUS_LOCATION and $MPI_LOCATION environment variables set. The GLO-
 BUS_LOCATION must point to the root of a valid GT4 installation (such as /nfs/software/globus-4.0.2). Similarly,
 the MPI_LOCATION variable must point to the root of a valid MPI installation (such as /nfs/software/mpich-
 1.2.7). If you're unsure how to set these environment variables, check with your site administrator. Common ways
 to do this are like this:

 [bash users, try this]
 bash # export GLOBUS_LOCATION=/nfs/software/globus-4.0.2
 bash # export MPI_LOCATION=/nfs/software/mpich-1.2.7

 [tcsh users, try this]
 tcsh $ setenv GLOBUS_LOCATION /nfs/software/globus-4.0.2
 tcsh $ setenv GLOBUS_LOCATION /nfs/software/mpich-1.2.7

2. The first major step is to make sure that your GT4 installation is a recent enough version and is compatible with
 this Information Provider. If you're running GT 4.0.2, you will need to update your installation with the May 5
 WS-MDS RPProvider patch located at:

 http://www.globus.org/toolkit/downloads/development/

 Install this patch by setting your GLOBUS_LOCATION to the appropriate directory and then running the following
 commands:

 $GLOBUS_LOCATION/sbin/gpt-build -update gt4.0.2-wsmds-update-1.0-src_bundle.tar.gz
 $GLOBUS_LOCATION/sbin/gpt-postinstall -force

3. When this step is complete, you should now have a file located at $GLOBUS_LOCATION/etc/globus_ws-
 rf_mds_usefulrp/gluece-rpprovider-sample-config.xml. Copy this file to $GLOBUS_LOCATION/etc/globus_ws-
 rf_mds_usefulrp/rp-provider-config.xml.

4. Edit your $GLOBUS_LOCATION/etc/globus_wsrf_mds_index/server-config.wsdd file.
 Locate the DefaultIndexService section at the very bottom and replace it with the following:
<service name="DefaultIndexService" provider="Handler"
 use="literal" style="document">
 <parameter name="providers" value="org.globus.wsrf.impl.servicegroup.ServiceGroupRegistrationProvider,
 org.globus.mds.usefulrp.rpprovider.ResourcePropertyProviderCollection,
 GetRPProvider,
 GetMRPProvider,
 QueryRPProvider,
 DestroyProvider,
 SetTerminationTimeProvider,
 SubscribeProvider,
 GetCurrentMessageProvider"/>

 <parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
 <parameter name="scope" value="Application"/>
 <parameter name="allowedMethods" value="*"/>
 <parameter name="rpProviderConfigFile" value="/etc/globus_wsrf_mds_usefulrp/rp-provider-config.xml"/>
 <parameter name="className" value="org.globus.mds.index.impl.DefaultIndexService"/>
 <wsdlFile>share/schema/mds/index/index_service.wsdl</wsdlFile>
</service>

5. Download the exec_wrapper script\(^1\) and the perf_benchmark script\(^2\) to a location on your cluster that is accessible to the login node as well as the backend (compute) nodes. While the perf_benchmark is only run on the login node, the exec_wrapper must be accessible because it will be run on each of the backend nodes.

After placing these files in a suitable shared location, please make sure that they are executable by issuing the following shell command:

```
chmod a+x exec_wrapper perf_benchmark
```

6. Finally, the rest of the configuration will be a matter of editing your $GLOBUS_LOCATION/etc/globus_wsrf_mds_usefulrp/rp-provider-config.xml file. Assuming that the Cluster Monitoring and Scheduling data is already properly configured (which is outside the scope of this document), we need to make some edits.

3.1. Configuring the Information Provider to Run the HELLO WORLD performance test

The following block of XML is the configuration that is needed to enable the "Hello, World!" test in the Index Service. It uses the RPPProvider framework to create a Resource Property (RP) called PerfBM-HelloWorld that will contain the hello world information upon successful execution.

\(\text{Note}\)

Note that this configuration block must be added to the $GLOBUS_LOCATION/etc/globus_wsrf_mds_usefulrp/rp-provider-config.xml file.

\(^1\) exec_wrapper
\(^2\) perf_benchmark
In the above, you must edit all of the argument lines.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st argument</td>
<td>Specifies the absolute path location to the perf_benchmark script. It should be something like /nfs/home/user/perf_benchmark. Don’t forget that this script must have executable permissions to run properly.</td>
</tr>
<tr>
<td>2nd argument</td>
<td>Specifies the scheduler to use. The only acceptable values here are Fork, PBS, and Condor. In theory the scheduler can be any scheduler that can be passed to WS-GRAM’s globusrun-ws program.</td>
</tr>
<tr>
<td>3rd argument</td>
<td>Specifies the MJFS to which the job submission should be made. This must specify the MJFS to which the job submission should be made. This must be specifically a properly configured and running container.</td>
</tr>
</tbody>
</table>
4th argument | Specifies the number of backend (compute) nodes that should be involved in the test that is to be run. For example, the value of 4 will run the job on 4 nodes and aggregate the results of the 4 hosts.
---|---
5th argument | Specify a valid temporary directory that the login node has file creation/removal and write access in. Some temporary files are used during the execution of this information provider and a directory must be specified where it can do this.
---|---
6th argument | Specifies the absolute path to the exec_wrapper program. It must be an absolute path and should be something like /nfs/home/user/exec_wrapper.

⚠️ **Important**

Do not forget that this script must have executable permissions to run properly.
---|---
7th argument | Specifies the test type that should be run. For this "Hello, World!" test, the value MUST be hello_world (as shown).

When this configuration block is placed properly within the resourcePropertyProviderConfiguration in the $GLOBAL_LOCATION/etc/globus_wsrfs_mds_usefulrp/rp-provider-config.xml file, the container can be restarted and when queried with a query such as this:

```bash
wsrf-query -s https://MYHOST:MYPORT/wsrf/services/DefaultIndexService /*[local-name()='PerfBM-HelloWorld']"
```

You should see output that resembles the following:

```xml
<ns1:PerfBM-HelloWorld xmlns:ns1="http://perfbm-testing"
xmlns:exw="http://perfbm.provider/2006/execWrapper"
xmlns:pbo="http://perfbm.provider/2006/pbOutput">

<pbo:perfBenchmarkOutputData>

<exw:hostBenchmarkOutput>
<exw:hostname>skynet-18</exw:hostname>
<exw:programCommandLine>/bin/echo Hello, World!</exw:programCommandLine>
<exw:startDate>Fri May 12 12:44:32 PDT 2006</exw:startDate>
<exw:endDate>Fri May 12 12:44:32 PDT 2006</exw:endDate>
<exw:testProgramOutput>Hello, World!</exw:testProgramOutput>
</exw:hostBenchmarkOutput>

<exw:hostBenchmarkOutput>
<exw:hostname>skynet-19</exw:hostname>
<exw:programCommandLine>/bin/echo Hello, World!</exw:programCommandLine>
<exw:startDate>Fri May 12 12:44:32 PDT 2006</exw:startDate>
<exw:endDate>Fri May 12 12:44:32 PDT 2006</exw:endDate>
<exw:testProgramOutput>Hello, World!</exw:testProgramOutput>
</exw:hostBenchmarkOutput>

<exw:hostBenchmarkOutput>
<exw:hostname>skynet-18</exw:hostname>
<exw:programCommandLine>/bin/echo Hello, World!</exw:programCommandLine>
<exw:startDate>Fri May 12 12:44:32 PDT 2006</exw:startDate>
<exw:endDate>Fri May 12 12:44:32 PDT 2006</exw:endDate>
<exw:testProgramOutput>Hello, World!</exw:testProgramOutput>
</exw:hostBenchmarkOutput>

<exw:hostBenchmarkOutput>
<exw:hostname>skynet-19</exw:hostname>
<exw:programCommandLine>/bin/echo Hello, World!</exw:programCommandLine>
<exw:startDate>Fri May 12 12:44:32 PDT 2006</exw:startDate>
<exw:endDate>Fri May 12 12:44:32 PDT 2006</exw:endDate>
<exw:testProgramOutput>Hello, World!</exw:testProgramOutput>
</exw:hostBenchmarkOutput>
```

---|---
3.2. Configuring the Information Provider to Run the STREAM performance test

The following block of XML is the configuration that is needed to enable the Stream test in the Index Service. It uses the RPProvider framework to create a Resource Property (RP) called PerfBM-Stream that will contain the stream output information upon successful execution.

Note

Note that this configuration block must be added to the $GLOBUS_LOCATION/etc/globus_ws-rf_mds_usefulrp/rp-provider-config.xml file.

```xml
<ns1:resourcePropertyName xsi:type="xsd:QName" xmlns:perfbm="http://perfbm-testing">perfbm:PerfBM-Stream</ns1:resourcePropertyName>
<ns1:resourcePropertyElementProducers xsi:type="ns1:resourcePropertyElementProducerConfig">
<ns1:className xsi:type="xsd:string" xmlns:xsd="http://www.w3.org/2001/XMLSchema">org.globus.mds.usefulrp.rpprovider.producers.ExternalProcessElementProducer</ns1:className>
<!-- *** SPECIFY THE SCRIPT TO RUN HERE *** -->
</ns1:resourcePropertyElementProducers>
</ns1:resourcePropertyName>
```
<!-- *** BEGIN SCRIPT ARGUMENTS *** -->

<ns1:arguments xsi:type="xsd:string"
xmns:xs="http://www.w3.org/2001/XMLSchema">SCHEDULER</ns1:arguments>

<ns1:arguments xsi:type="xsd:string"

<ns1:arguments xsi:type="xsd:string"
xmns:xs="http://www.w3.org/2001/XMLSchema">4</ns1:arguments>

<ns1:arguments xsi:type="xsd:string"
xmns:xs="http://www.w3.org/2001/XMLSchema">/tmp</ns1:arguments>

<ns1:arguments xsi:type="xsd:string"
xmns:xs="http://www.w3.org/2001/XMLSchema">/ABSOLUTE/PATH/TO/exec_wrapper</ns1:arguments>

<ns1:arguments xsi:type="xsd:string"
xmns:xs="http://www.w3.org/2001/XMLSchema">stream</ns1:arguments>

<!-- *** END ARGUMENTS *** -->

<ns1:period xsi:type="xsd:int" xmlns:xsd="http://www.w3.org/2001/XMLSchema">60000</ns1:period>

</ns1:resourcePropertyElementProducers>

In the above, you must edit all of the argument lines.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st argument</td>
<td>Specifies the absolute path location to the perf_benchmark script. It should be something like /nfs/home/user/perf_benchmark. Important Don't forget that this script must have executable permissions to run properly.</td>
</tr>
<tr>
<td>2nd argument</td>
<td>Specifies the scheduler to use. The only acceptable values here are Fork, PBS, and Condor. In theory the scheduler can be any scheduler that can be passed to WS-GRAM's globusrun-ws program.</td>
</tr>
<tr>
<td>3rd argument</td>
<td>Specifies the MJFS to which the job submission should be made. This must specify the MJFS to which the job submission should be made. This must be specify a properly configured and running container.</td>
</tr>
<tr>
<td>4th argument</td>
<td>Specifies the number of backend (compute) nodes that should be involved in the test that is to be run. For example, the value of 4 will run the job on 4 nodes and aggregate the results of the 4 hosts.</td>
</tr>
<tr>
<td>5th argument</td>
<td>Specify a valid temporary directory that the login node has file creation/removal and write access in. Some temporary files are used during the execution of this information provider and a directory must be specified where it can do this.</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>6th argument</td>
<td>Specifies the absolute path to the exec_wrapper program. It must be an absolute path and should be something like /nfs/home/user/exec_wrapper.</td>
</tr>
<tr>
<td>7th argument</td>
<td>Specifies the test type that should be run. For this Stream test, the value MUST be stream (as shown).</td>
</tr>
<tr>
<td>8th argument</td>
<td>Specifies the absolute path location to the stream binary. It should be something like /nfs/home/user/stream.</td>
</tr>
</tbody>
</table>

Important

Do not forget that this script must have executable permissions to run properly.

When this configuration block is placed properly within the resourcePropertyProviderConfiguration in the $GLOBUS_LOCATION/etc/globus_wsrf_mds_usefulrp/rp-provider-config.xml file, the container can be restarted and when queried with a query such as this:

```
wsrf-query -s https://MYHOST:MYPORT/wsrf/services/DefaultIndexService "//*[local-name()='PerfBM-Stream']"
```

You should see output that resembles the following:

```xml
  <exw:programCommandLine>/nfs/home/mdsdev/neillm/stream/stream_d</exw:programCommandLine>
  <exw:startDate>Mon May 15 10:03:39 PDT 2006</exw:startDate>
  <exw:endDate>Mon May 15 10:04:13 PDT 2006</exw:endDate>
  <exw:testProgramOutput>
    This system uses 8 bytes per DOUBLE PRECISION word.
    Array size = 20005000, Offset = 0
    Total memory required = 457.9 MB.
    Each test is run 10 times, but only the *best* time for each is used.
    Your clock granularity/precision appears to be 10000 microseconds.
    Each test below will take on the order of 579999 microseconds.
    (= 57 clock ticks)
    Increase the size of the arrays if this shows that you are not getting at least 20 clock ticks per test.
    WARNING -- The above is only a rough guideline.
    For best results, please be sure you know the precision of your system timer.
  </exw:testProgramOutput>
</ns1:PerfBM-Stream>
```
<table>
<thead>
<tr>
<th>Function</th>
<th>Rate (MB/s)</th>
<th>RMS time</th>
<th>Min time</th>
<th>Max time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy:</td>
<td>444.5556</td>
<td>0.7240</td>
<td>0.7200</td>
<td>0.7300</td>
</tr>
<tr>
<td>Scale:</td>
<td>450.8169</td>
<td>0.7180</td>
<td>0.7100</td>
<td>0.7200</td>
</tr>
<tr>
<td>Add:</td>
<td>558.2791</td>
<td>0.8650</td>
<td>0.8600</td>
<td>0.8700</td>
</tr>
<tr>
<td>Triad:</td>
<td>551.8621</td>
<td>0.8791</td>
<td>0.8700</td>
<td>0.9100</td>
</tr>
</tbody>
</table>

This system uses 8 bytes per DOUBLE PRECISION word.

Array size = 20005000, Offset = 0
Total memory required = 457.9 MB.
Each test is run 10 times, but only the *best* time for each is used.

Your clock granularity/precision appears to be 10000 microseconds.
Each test below will take on the order of 589999 microseconds.
(= 58 clock ticks)
Increase the size of the arrays if this shows that you are not getting at least 20 clock ticks per test.

WARNING -- The above is only a rough guideline.
For best results, please be sure you know the precision of your system timer.
This system uses 8 bytes per DOUBLE PRECISION word.

Array size = 20005000, Offset = 0
Total memory required = 457.9 MB.
Each test is run 10 times, but only
the *best* time for each is used.

Your clock granularity/precision appears to be 10000 microseconds.
Each test below will take on the order of 589999 microseconds.
(= 58 clock ticks)
Increase the size of the arrays if this shows that
you are not getting at least 20 clock ticks per test.

WARNING -- The above is only a rough guideline.
For best results, please be sure you know the
precision of your system timer.

Function Rate (MB/s) RMS time Min time Max time
Copy: 432.5405 0.7440 0.7400 0.7500
Scale: 438.4658 0.7360 0.7300 0.7400
Add: 545.5909 0.8860 0.8800 0.8900
Triad: 539.4607 0.8960 0.8900 0.9000

Increase the size of the arrays if this shows that you are not getting at least 20 clock ticks per test.

WARNING -- The above is only a rough guideline.
For best results, please be sure you know the precision of your system timer.

<table>
<thead>
<tr>
<th>Function</th>
<th>Rate (MB/s)</th>
<th>RMS time</th>
<th>Min time</th>
<th>Max time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy:</td>
<td>432.5405</td>
<td>0.7440</td>
<td>0.7400</td>
<td>0.7500</td>
</tr>
<tr>
<td>Scale:</td>
<td>438.4658</td>
<td>0.7360</td>
<td>0.7300</td>
<td>0.7400</td>
</tr>
<tr>
<td>Add:</td>
<td>545.5909</td>
<td>0.8870</td>
<td>0.8800</td>
<td>0.8900</td>
</tr>
<tr>
<td>Triad:</td>
<td>539.4607</td>
<td>0.8980</td>
<td>0.8900</td>
<td>0.9000</td>
</tr>
</tbody>
</table>

3.3. Configuring the Information Provider to Run the MPPTEST performance test

The following block of XML is the configuration that is needed to enable the MPPTest test in the Index Service. It uses the RPProvider framework to create a Resource Property (RP) called PerfBM-MPPTest that will contain the mptest output information upon successful execution.

--- Note ---
Note that this configuration block must be added to the $GLOBUS_LOCATION/etc/globus_wsrf_mds_usefulrp/rp-provider-config.xml file.

--- Note ---
Also please note that this test cannot run without a properly set MPI_LOCATION environment variable.

```xml
<ns1:resourcePropertyName xsi:type="xsd:QName" xmlns:perfbm="http://perfbm-testing">perfbm:PerfBM-MPPTest</ns1:resourcePropertyName>
<ns1:resourcePropertyElementProducers xsi:type="ns1:resourcePropertyElementProducerConfig">
  <ns1:className xsi:type="xsd:string" xmlns:xsd="http://www.w3.org/2001/XMLSchema">org.globus.mds.usefulrp.rpprovider.producers.ExternalProcessElementProducer</ns1:className>
  <!-- *** SPECIFY THE SCRIPT TO RUN HERE *** -->
</ns1:resourcePropertyElementProducers>
```
In the above, you must edit all of the argument lines.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st argument</td>
<td>Specifies the absolute path location to the perf_benchmark script. It should be something like /nfs/home/user/perf_benchmark. Important Don’t forget that this script must have executable permissions to run properly.</td>
</tr>
<tr>
<td>2nd argument</td>
<td>Specifies the scheduler to use. The only acceptable values here are Fork, PBS, and Condor. In theory the scheduler can be any scheduler that can be passed to WS-GRAM’s globusrun-ws program.</td>
</tr>
<tr>
<td>3rd argument</td>
<td>Specifies the MJFS to which the job submission should be made. This must be specify a properly configured and running container.</td>
</tr>
<tr>
<td>4th argument</td>
<td>Specifies the number of backend (compute) nodes that should be involved in the test that is to be run. For example, the value of 4 will run the job on 4 nodes and aggregate the results of the 4 hosts.</td>
</tr>
<tr>
<td>5th argument</td>
<td>Specify a valid temporary directory that the login node has file creation/removal and write access in. Some temporary files are used during the execution of this information provider and a directory must be specified where it can do this.</td>
</tr>
</tbody>
</table>
6th argument
Specifies the absolute path to the exec_wrapper program. It must be an absolute path and should be something like /nfs/home/user/exec_wrapper.

⚠️ **Important**

Do not forget that this script must have executable permissions to run properly.

7th argument
Specifies the test type that should be run. For this MPPTest test, the value MUST be mpptest (as shown).

8th argument
Specifies the absolute path location to the stream binary. It should be something like /nfs/home/user/mpptest.

When this configuration block is placed properly within the resourcePropertyProviderConfiguration in the $GLOBUS_LOCATION/etc/globus_wsrf_mds_usefulrp/rp-provider-config.xml file, the container can be restarted and when queried with a query such as this:

```
wsrf-query -s \n  https://MYHOST:MYPORT/wsrf/services/DefaultIndexService \n  "//*[local-name()='PerfBM-MPPTest']"
```

You should see output that resembles the following:

```
<ns1:PerfBM-MPPTest xmlns:ns1="http://perfbm-testing"
  xmlns:exw="http://perfbm.provider/2006/execWrapper"
  xmlns:pbo="http://perfbm.provider/2006/pbOutput">
  <pbo:perfBenchmarkOutputData>
    <exw:hostBenchmarkOutput>
      <exw:hostname>skynet-2</exw:hostname>
      <exw:programCommandLine>
        /nfs/software/mpich/1.2.7/bin/mpirun -np 4
        /nfs/home/mdsdev/neilllm/bin/mpptest
      </exw:programCommandLine>
      <exw:startDate>Wed May 17 11:52:35 PDT 2006</exw:startDate>
      <exw:endDate>Wed May 17 11:52:52 PDT 2006</exw:endDate>
      <exw:testProgramOutput>
        set default
        set font variable
        set curve window y 0.15 0.90
        set order d d d x y d
        title left 'time (us)', bottom 'Size (bytes)',
        top 'Comm Perf for MPI (skynet-2.isi.edu)',
        'type = blocking'
        #p0     pl      dist     len    ave time (us)    rate
        0       3       3       0       70.340000       0.00
        0       3       3       32      72.750000       439.863e+3
        0       3       3       64      106.750000      599.532e+3
        0       3       3       96      123.070000      780.044e+3
        0       3       3       128     124.070000      1.032e+6
        0       3       3       160     124.170000      1.289e+6
        0       3       3       192     124.270000      1.545e+6
```

15
0	3	3	224	124.300000	1.802e+6
0	3	3	256	124.490000	2.056e+6
0	3	3	288	124.510000	2.571e+6
0	3	3	320	124.450000	2.571e+6
0	3	3	352	124.750000	2.822e+6
0	3	3	384	124.810000	3.077e+6
0	3	3	416	125.150000	3.324e+6
0	3	3	448	125.390000	3.573e+6
0	3	3	480	126.230000	3.780e+6
0	3	3	512	128.340000	3.989e+6
0	3	3	544	133.480000	4.076e+6
0	3	3	576	136.000000	4.235e+6
0	3	3	608	137.880000	4.410e+6
0	3	3	640	163.280000	3.920e+6
0	3	3	672	185.420000	3.624e+6
0	3	3	704	186.560000	3.774e+6
0	3	3	736	186.730000	3.942e+6
0	3	3	768	186.740000	4.113e+6
0	3	3	800	186.690000	4.285e+6
0	3	3	832	186.820000	4.453e+6
0	3	3	864	186.900000	4.623e+6
0	3	3	896	187.000000	4.791e+6
0	3	3	928	187.110000	4.960e+6
0	3	3	960	187.200000	5.128e+6
0	3	3	992	187.250000	5.298e+6
0	3	3	1024	187.230000	5.469e+6

```
plot square
join
wait
new page
</exw:testProgramOutput>

</exw:hostBenchmarkOutput>

<exw:hostBenchmarkOutput>
<exw:hostname>skynet-3</exw:hostname>

<exw:programCommandLine>/nfs/software/mpich/1.2.7/bin/mpirun -np 4 /nfs/home/mdsdev/neillm/bin/mpptest</exw:programCommandLine>

<exw:startDate>Wed May 17 11:52:35 PDT 2006</exw:startDate>

<exw:endDate>Wed May 17 11:52:52 PDT 2006</exw:endDate>

<exw:testProgramOutput>
set default
set font variable
set curve window y 0.15 0.90
set order d d d x y d
setTitle left 'time (us)', bottom 'Size (bytes)', top 'Comm Perf for MPI (skynet-3.isi.edu)', 'type = blocking'
```
<table>
<thead>
<tr>
<th>#p0</th>
<th>pl</th>
<th>dist</th>
<th>len</th>
<th>ave time (us)</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>94.780000</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>32</td>
<td>96.070000</td>
<td>333.090e+3</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>64</td>
<td>106.750000</td>
<td>599.532e+3</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>96</td>
<td>124.140000</td>
<td>773.320e+3</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>128</td>
<td>124.200000</td>
<td>1.031e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>160</td>
<td>124.180000</td>
<td>1.288e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>192</td>
<td>124.220000</td>
<td>1.546e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>224</td>
<td>124.260000</td>
<td>1.803e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>256</td>
<td>124.440000</td>
<td>2.057e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>288</td>
<td>124.510000</td>
<td>2.313e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>320</td>
<td>124.580000</td>
<td>2.569e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>352</td>
<td>124.660000</td>
<td>2.825e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>384</td>
<td>124.660000</td>
<td>3.080e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>416</td>
<td>125.700000</td>
<td>3.309e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>448</td>
<td>125.610000</td>
<td>3.567e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>480</td>
<td>128.180000</td>
<td>3.745e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>512</td>
<td>131.910000</td>
<td>3.881e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>544</td>
<td>139.550000</td>
<td>3.898e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>576</td>
<td>150.530000</td>
<td>3.826e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>608</td>
<td>152.130000</td>
<td>3.997e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>640</td>
<td>163.000000</td>
<td>3.926e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>672</td>
<td>185.490000</td>
<td>3.623e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>704</td>
<td>186.480000</td>
<td>3.775e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>736</td>
<td>186.630000</td>
<td>3.944e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>768</td>
<td>186.660000</td>
<td>4.114e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>800</td>
<td>186.710000</td>
<td>4.285e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>832</td>
<td>186.770000</td>
<td>4.455e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>864</td>
<td>186.930000</td>
<td>4.622e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>896</td>
<td>187.020000</td>
<td>4.791e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>928</td>
<td>187.040000</td>
<td>4.962e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>960</td>
<td>188.210000</td>
<td>5.101e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>992</td>
<td>187.980000</td>
<td>5.277e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1024</td>
<td>187.180000</td>
<td>5.471e+6</td>
</tr>
</tbody>
</table>

plot square
join
wait
new page
</exw:testProgramOutput>

</exw:hostBenchmarkOutput>

<exw:hostname>skynet-4</exw:hostname>

<exw:programCommandLine>/nfs/software/mpich/1.2.7/bin/mpirun -np 4 /nfs/home/mdsdev/neillm/bin/mpptest</exw:programCommandLine>

<exw:startDate>Wed May 17 11:52:35 PDT 2006</exw:startDate>

<exw:endDate>Wed May 17 11:52:52 PDT 2006</exw:endDate>

<exw:testProgramOutput>
set default
set font variable
set curve window y 0.15 0.90
set order d d d x y d
title left 'time (us)', bottom 'Size (bytes)',
top 'Comm Perf for MPI (skynet-4.isi.edu)',
'type = blocking'

<table>
<thead>
<tr>
<th>#p0</th>
<th>pl</th>
<th>dist</th>
<th>len</th>
<th>ave time (us)</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>32</td>
<td>95.880000</td>
<td>333.75e+3</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>64</td>
<td>105.720000</td>
<td>605.373e+3</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>96</td>
<td>121.670000</td>
<td>789.019e+3</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>128</td>
<td>124.090000</td>
<td>1.032e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>160</td>
<td>124.240000</td>
<td>1.288e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>192</td>
<td>124.280000</td>
<td>1.545e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>224</td>
<td>124.250000</td>
<td>1.803e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>256</td>
<td>124.510000</td>
<td>2.056e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>288</td>
<td>124.490000</td>
<td>2.313e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>320</td>
<td>124.710000</td>
<td>2.566e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>352</td>
<td>124.540000</td>
<td>2.826e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>384</td>
<td>124.820000</td>
<td>3.076e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>416</td>
<td>124.840000</td>
<td>3.332e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>448</td>
<td>125.370000</td>
<td>3.573e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>480</td>
<td>126.530000</td>
<td>3.794e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>512</td>
<td>129.260000</td>
<td>3.961e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>544</td>
<td>136.720000</td>
<td>3.979e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>576</td>
<td>150.300000</td>
<td>3.832e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>608</td>
<td>151.210000</td>
<td>4.021e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>640</td>
<td>160.530000</td>
<td>3.987e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>672</td>
<td>186.560000</td>
<td>3.602e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>704</td>
<td>186.530000</td>
<td>3.774e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>736</td>
<td>186.680000</td>
<td>3.943e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>768</td>
<td>186.740000</td>
<td>4.113e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>800</td>
<td>186.880000</td>
<td>4.281e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>832</td>
<td>187.010000</td>
<td>4.449e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>864</td>
<td>187.180000</td>
<td>4.616e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>896</td>
<td>187.000000</td>
<td>4.791e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>928</td>
<td>187.190000</td>
<td>4.958e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>960</td>
<td>187.210000</td>
<td>5.128e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>992</td>
<td>187.200000</td>
<td>5.299e+6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1024</td>
<td>187.200000</td>
<td>5.470e+6</td>
</tr>
</tbody>
</table>

plot square
join
wait
new page
</exw:testProgramOutput>

</exw:hostBenchmarkOutput>

<exw:hostBenchmarkOutput>
<exw:hostname>skynet-5</exw:hostname>
<exw:programCommandLine>/nfs/software/mpich/1.2.7/bin/mpirun -np 4 /nfs/home/mdsdev/neillm/bin/mpptest</exw:programCommandLine>

<exw:startDate>Wed May 17 11:52:35 PDT 2006</exw:startDate>

<exw:endDate>Wed May 17 11:52:52 PDT 2006</exw:endDate>

<exw:testProgramOutput>
set default
set font variable
set curve window y 0.15 0.90
set order d d d x y d

plot square
join
wait
new page

Draft Reference Guide Draft

#p0 pl dist len ave time (us) rate
0 3 3 0 93.560000 0.00
0 3 3 32 94.490000 338.660e+3
0 3 3 64 106.770000 599.419e+3
0 3 3 96 124.160000 773.196e+3
0 3 3 128 123.250000 1.039e+6
0 3 3 160 124.260000 1.288e+6
0 3 3 192 124.250000 1.545e+6
0 3 3 224 124.310000 1.802e+6
0 3 3 256 124.410000 2.058e+6
0 3 3 288 124.470000 2.314e+6
0 3 3 320 124.520000 2.570e+6
0 3 3 352 124.730000 2.822e+6
0 3 3 384 125.580000 3.058e+6
0 3 3 416 125.630000 3.311e+6
0 3 3 448 125.200000 3.578e+6
0 3 3 480 127.930000 3.752e+6
0 3 3 512 127.280000 4.023e+6
0 3 3 544 129.450000 4.202e+6
0 3 3 576 143.250000 4.021e+6
0 3 3 608 155.510000 3.910e+6
0 3 3 640 164.380000 3.893e+6
0 3 3 672 185.450000 3.624e+6
0 3 3 704 186.550000 3.774e+6
0 3 3 736 186.610000 3.944e+6
0 3 3 768 186.680000 4.114e+6
0 3 3 800 186.780000 4.283e+6
0 3 3 832 186.770000 4.455e+6
0 3 3 864 186.910000 4.623e+6
0 3 3 896 186.990000 4.792e+6
0 3 3 928 187.000000 4.963e+6
0 3 3 960 187.100000 5.131e+6
0 3 3 992 187.420000 5.293e+6
0 3 3 1024 187.270000 5.468e+6
3.3.1. Troubleshooting the MPPTест performance test

If you are seeing the following error after the container has been started, the most likely cause is that you have not properly set the MPI_LOCATION environment variable. Please set this to a suitable MPI location (such as /nfs/software/mpich-1.2.7) and restart the container.

```
[ServiceThread-12,processConfigFile:107] Reading default registration configuration from file:
scratch/mdsdev-neillm/gt4.0.2-plus-cvs/etc/globus_wsrf_mds_index/hierarchy.xml
[Thread-16,timerExpired:159] Unhandled exception during execution of
org.globus.mds.usefulrp.rpprovider.producers.ExternalProcessElementProducer:
java.lang.Exception: Exception while parsing child process stdout into valid XML document:
org.xml.sax.SAXException: Fatal Error: URI=null
Line=-1: Premature end of file.
```

3.4. Configuring the Information Provider to Run the MPPTест Logscale performance tests

The configuration for this test is exactly the same as the configuration for the MPPTест above, except for the RP name and 7th argument:

- Change the RP name from PerfBM-MPPTest to PerfBM-MPPTest-LogScale.
- Change the 7th argument of the $GLOBUS_LOCATION/etc/globus_wsrf_mds_usefulrp/rp-provider-config.xml file to be mpptest-logscale instead of mpptest.

3.5. Configuring the Information Provider to Run the MPPTест Bisect Logscale performance tests

The configuration for this test is exactly the same as the configuration for the MPPTест above, except for the RP name and 7th argument:

- Change the RP name from PerfBM-MPPTest to PerfBM-MPPTest-BiSect-LogScale.
- Change the 7th argument of the $GLOBUS_LOCATION/etc/globus_wsrf_mds_usefulrp/rp-provider-config.xml file to be mpptest-bisect-logscale instead of mpptest.
3.6. Configuring the Information Provider to Run the MPIBENCH/LLCBENCH performance tests

Information on this particular test is to be available at a future date.

4. Resource Properties

TODO: the resource properties the provider creates/collects/advertises/publishes

4.1. Namespace URI

TODO: Include the Namespace URI, or provide a link to the Java API Documentation, which is required to construct the QName for the subscription to the Topic.

5. Schema

TODO: link to schema files

6. Security Considerations

General security considerations associated with the container and all MDS services apply. See: Aggregator Framework.

Additionally the user should consider that publishing system specific information as is the intention of this provider can have security ramifications.

6.1. WS MDS Aggregator Services (Index Service and Trigger Service) Security Considerations

By default, the aggregator sources do not use authentication credentials -- they retrieve information using anonymous SSL authentication or no authentication at all, and thus retrieve only publicly-available information. If a user or administrator changes that configuration so that a service's aggregator source uses credentials to acquire non-privileged data, then that user or administrator must configure the service's aggregator sink to limit access to authorized users.

7. Testing

TODO: add a simple test for this info provider

8. Troubleshooting

TODO: describe common issues users may experience with this info provider
Glossary

A

aggregator source A Java class that implements an interface (defined as part of the Aggregator Framework) to collect XML-formatted data. WS MDS contains three aggregator sources: the query aggregator source, the subscription aggregator source, and the execution aggregator source.