GT4 Admin Guide
Table of Contents

1. Introduction ... 1
2. Before you begin .. 2
3. Software Prerequisites .. 3
 1. Required software ... 3
 2. Optional software ... 4
 3. Platform Notes ... 4
4. Installing GT 4.0 .. 9
 1. Configuring ... 11
 2. Deploying ... 16
 3. Testing ... 16
 4. Security Considerations ... 16
 5. Troubleshooting ... 17
 6. Environment variable interface ... 19
6. Basic Security Configuration .. 22
 1. Set environment variables ... 22
 2. Obtain host certificates ... 22
 3. Make the host credentials accessible by the container ... 23
 4. Add authorization ... 24
 5. Verify Basic Security ... 24
 6. Firewall configuration ... 25
 7. Syslog logging ... 25
7. SimpleCA Admin Guide ... 26
 1. Building and Installing ... 26
 2. Configuring ... 30
 3. Deploying ... 31
 4. Testing ... 31
 5. Security Considerations ... 31
 6. Troubleshooting ... 31
8. GridFTP Admin Guide ... 32
 1. Building and Installing ... 32
 2. Configuring ... 34
 3. Deploying the GridFTP Server: globus-gridftp-server ... 46
 4. Testing ... 47
 5. Security Considerations ... 47
 6. Troubleshooting ... 49
 7. Usage statistics collection by the Globus Alliance .. 51
9. Java WS Core Admin Guide ... 53
 1. Building and Installing ... 53
 2. Configuring ... 54
 3. Deploying ... 61
 4. Testing ... 66
 5. Security Considerations ... 67
 6. Troubleshooting ... 67
 7. Usage statistics collection by the Globus Alliance .. 69
10. RFT Admin Guide .. 71
 1. Building and Installing ... 71
 2. Configuring ... 71
 3. Using MySQL .. 75
 4. Deploying ... 75
 5. Testing ... 76
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Building and Installing RLS</td>
<td>133</td>
</tr>
<tr>
<td>2.</td>
<td>Configuring RLS</td>
<td>157</td>
</tr>
<tr>
<td>3.</td>
<td>Deploying RLS</td>
<td>162</td>
</tr>
<tr>
<td>4.</td>
<td>Testing RLS</td>
<td>164</td>
</tr>
<tr>
<td>5.</td>
<td>Security Considerations RLS</td>
<td>165</td>
</tr>
<tr>
<td>6.</td>
<td>Troubleshooting RLS</td>
<td>166</td>
</tr>
<tr>
<td>7.</td>
<td>Usage statistics collection by the Globus Alliance RLS</td>
<td>167</td>
</tr>
</tbody>
</table>

11. WS GRAM Admin Guide

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Building and Installing</td>
<td>79</td>
</tr>
<tr>
<td>2.</td>
<td>Configuring WS GRAM Admin</td>
<td>80</td>
</tr>
<tr>
<td>3.</td>
<td>Deploying WS GRAM Admin</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>Testing WS GRAM Admin</td>
<td>101</td>
</tr>
<tr>
<td>5.</td>
<td>Security Considerations WS GRAM Admin</td>
<td>112</td>
</tr>
<tr>
<td>6.</td>
<td>Troubleshooting WS GRAM Admin</td>
<td>113</td>
</tr>
<tr>
<td>7.</td>
<td>Usage statistics collection by the Globus Alliance WS GRAM</td>
<td>114</td>
</tr>
</tbody>
</table>

12. GSI-OpenSSH Admin Guide

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Building and Installing</td>
<td>98</td>
</tr>
<tr>
<td>2.</td>
<td>Configuring GSI-OpenSSH Admin</td>
<td>99</td>
</tr>
<tr>
<td>3.</td>
<td>Deploying GSI-OpenSSH Admin</td>
<td>106</td>
</tr>
<tr>
<td>4.</td>
<td>Testing GSI-OpenSSH Admin</td>
<td>106</td>
</tr>
<tr>
<td>5.</td>
<td>Security Considerations GSI-OpenSSH Admin</td>
<td>106</td>
</tr>
<tr>
<td>6.</td>
<td>Troubleshooting GSI-OpenSSH Admin</td>
<td>107</td>
</tr>
<tr>
<td>7.</td>
<td>Usage statistics collection by the Globus Alliance GSI-OpenSSH</td>
<td>107</td>
</tr>
</tbody>
</table>

13. MyProxy Admin Guide

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Building and Installing</td>
<td>103</td>
</tr>
<tr>
<td>2.</td>
<td>Configuring MyProxy Admin</td>
<td>103</td>
</tr>
<tr>
<td>3.</td>
<td>Deploying MyProxy Admin</td>
<td>106</td>
</tr>
<tr>
<td>4.</td>
<td>Testing MyProxy Admin</td>
<td>106</td>
</tr>
<tr>
<td>5.</td>
<td>Security Considerations MyProxy Admin</td>
<td>106</td>
</tr>
<tr>
<td>6.</td>
<td>Troubleshooting MyProxy Admin</td>
<td>107</td>
</tr>
<tr>
<td>7.</td>
<td>Usage statistics collection by the Globus Alliance MyProxy</td>
<td>107</td>
</tr>
</tbody>
</table>

14. CAS Admin Guide

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Building and Installing</td>
<td>108</td>
</tr>
<tr>
<td>2.</td>
<td>Configuring CAS</td>
<td>108</td>
</tr>
<tr>
<td>3.</td>
<td>Deploying CAS</td>
<td>112</td>
</tr>
<tr>
<td>4.</td>
<td>Testing CAS</td>
<td>115</td>
</tr>
<tr>
<td>5.</td>
<td>Example of CAS Server Administration</td>
<td>117</td>
</tr>
<tr>
<td>6.</td>
<td>Security Considerations CAS</td>
<td>121</td>
</tr>
<tr>
<td>7.</td>
<td>Troubleshooting CAS</td>
<td>121</td>
</tr>
</tbody>
</table>

15. RLS Admin Guide

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Building and Installing</td>
<td>124</td>
</tr>
<tr>
<td>2.</td>
<td>Configuring RLS</td>
<td>124</td>
</tr>
<tr>
<td>3.</td>
<td>Deploying RLS</td>
<td>130</td>
</tr>
<tr>
<td>4.</td>
<td>Testing RLS</td>
<td>130</td>
</tr>
<tr>
<td>5.</td>
<td>Security Considerations RLS</td>
<td>130</td>
</tr>
<tr>
<td>6.</td>
<td>Troubleshooting RLS</td>
<td>131</td>
</tr>
<tr>
<td>7.</td>
<td>Usage statistics collection by the Globus Alliance RLS</td>
<td>131</td>
</tr>
</tbody>
</table>

A. Building and Installing RLS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Requirements</td>
<td>133</td>
</tr>
<tr>
<td>2.</td>
<td>Setting environment variables</td>
<td>133</td>
</tr>
<tr>
<td>3.</td>
<td>Installing iODBC</td>
<td>134</td>
</tr>
<tr>
<td>4.</td>
<td>Installing the relational database</td>
<td>135</td>
</tr>
<tr>
<td>5.</td>
<td>Installing the RLS Server</td>
<td>138</td>
</tr>
<tr>
<td>6.</td>
<td>Configuring the RLS Database</td>
<td>138</td>
</tr>
<tr>
<td>7.</td>
<td>Configuring the RLS Server</td>
<td>140</td>
</tr>
<tr>
<td>8.</td>
<td>Starting the RLS Server</td>
<td>141</td>
</tr>
<tr>
<td>9.</td>
<td>Stopping the RLS Server</td>
<td>141</td>
</tr>
<tr>
<td>10.</td>
<td>Configuring the RLS Server for the MDS2 GRIS</td>
<td>142</td>
</tr>
<tr>
<td>11.</td>
<td>Configuring the RLS Server for the WS MDS Index Service</td>
<td>142</td>
</tr>
</tbody>
</table>
12. RedHat 9 Incompatibility ... 143
B. Packaging details ... 145
 1. The makefile .. 145
 2. The Grid Packaging Toolkit ... 145
 3. Picking a flavor for a source installation .. 146
 4. Using globus-makefile-header with a binary distribution 146
Java WS Core Glossary ... 147
Security Glossary .. 150
GridFTP Glossary ... 153
RLS Glossary ... 157
MDS4 Glossary ... 158
WS GRAM Glossary ... 160
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. CA files</td>
<td>11</td>
</tr>
<tr>
<td>5.2. Certificate request configuration files</td>
<td>12</td>
</tr>
<tr>
<td>5.3. Certificate request files</td>
<td>13</td>
</tr>
<tr>
<td>7.1. CA Name components</td>
<td>26</td>
</tr>
<tr>
<td>8.1. Informational Options</td>
<td>35</td>
</tr>
<tr>
<td>8.2. Modes of Operation</td>
<td>36</td>
</tr>
<tr>
<td>8.3. Authentication, Authorization, and Security Options</td>
<td>37</td>
</tr>
<tr>
<td>8.4. Logging Options</td>
<td>39</td>
</tr>
<tr>
<td>8.5. Single and Striped Remote Data Node Options</td>
<td>41</td>
</tr>
<tr>
<td>8.6. Disk Options</td>
<td>41</td>
</tr>
<tr>
<td>8.7. Network Options</td>
<td>42</td>
</tr>
<tr>
<td>8.8. Timeouts</td>
<td>42</td>
</tr>
<tr>
<td>8.9. User Messages</td>
<td>43</td>
</tr>
<tr>
<td>8.10. Module Options</td>
<td>43</td>
</tr>
<tr>
<td>8.11. Other</td>
<td>43</td>
</tr>
<tr>
<td>9.1. General configuration parameters</td>
<td>55</td>
</tr>
<tr>
<td>9.2. Standalone/embedded container-specific configuration parameters</td>
<td>56</td>
</tr>
<tr>
<td>9.3. Default container thread pool settings</td>
<td>56</td>
</tr>
<tr>
<td>9.4. Default container thread pool settings (GT 4.0.3+ only)</td>
<td>56</td>
</tr>
<tr>
<td>9.5. Axis Standard Parameters</td>
<td>57</td>
</tr>
<tr>
<td>9.6. Java WS Core Parameters</td>
<td>58</td>
</tr>
<tr>
<td>9.7. ResourceHomeImpl parameters</td>
<td>59</td>
</tr>
<tr>
<td>11.1. Scheduler-Specific Configuration Files</td>
<td>90</td>
</tr>
<tr>
<td>12.1. GSI-OpenSSH build arguments</td>
<td>98</td>
</tr>
<tr>
<td>13.1. myproxy-server.config lines</td>
<td>105</td>
</tr>
<tr>
<td>14.1. Database parameters</td>
<td>110</td>
</tr>
<tr>
<td>14.2. Command line options</td>
<td>113</td>
</tr>
<tr>
<td>14.3. Test database properties</td>
<td>115</td>
</tr>
<tr>
<td>14.4. Test properties</td>
<td>116</td>
</tr>
<tr>
<td>15.1. Settings</td>
<td>126</td>
</tr>
<tr>
<td>A.1. RLS Build Environment Variables</td>
<td>133</td>
</tr>
</tbody>
</table>
Chapter 1. Introduction

This guide contains a reference overview of the services contained in the Globus Toolkit. It can be used as an installation guide, but if you are just interested in starting to use the toolkit, we recommend the Quickstart Guide\(^1\) instead. It contains links back into this document as appropriate if you want more details on a particular section.

Each component includes online reference material, which this guide sometimes links to. The master list of documentation is [here]\(^2\). It includes User's Guides and Developer's Guides. This document is just the guide to administration.

\(^1\) quickstart.html
\(^2\) http://www.globus.org/toolkit/docs/4.0/toc_all.html
Chapter 2. Before you begin

Before you start installing the Globus Toolkit 4.0, there are a few things you should consider. The toolkit contains many subcomponents, and you may only be interested in some of them.

There are non-web services implementations of Security, GridFTP, Resource Management (GRAM), Replica Location Service, and Information Services (MDS2). These all run on Unix platforms only.

Additionally, there are WSRF implementations of Security, Resource Management (GRAM), Reliable File Transfer (RFT), and Information Services (Index). All the Java clients to these services run on both Windows and Unix. The WSRF GRAM service requires infrastructure that only runs on Unix systems.

Therefore, if you are new to the toolkit and want to experiment with all of the components, you may want to use a Unix system. If you are interested in the Windows development, you may restrict yourself to the Java-based software.
Chapter 3. Software Prerequisites

1. Required software

- Globus Toolkit installer, from Globus Toolkit 4.0 download page.
- J2SE 1.4.2+ SDK from Sun, IBM, HP, or BEA (do not use GCJ).

Note

To install using Java 1.6 from a source installer, please apply the Java 1.6 patch. To apply the patch, download it into the source installer then run

```
patch -p0 < java16.patch
```

You should see the output:

```
patching file source-trees/wsrf/java/core/source/build.xml
patching file source-trees/wsrf/java/core/source/pkgdata/pkg_data_src.gpt
```

If you are not comfortable using patches, you may instead just edit the file source-trees/wsrf/java/core/source/build.xml. Edit it so the lines 89-94 read:

```xml
<condition property="compiler.jvmarg" value="-source 1.4">
  <or>
    <equals arg1="$\{ant.java.version\}" arg2="1.5"/>
    <equals arg1="$\{ant.java.version\}" arg2="1.6"/>
  </or>
</condition>
```

You do not need this patch for java 1.4.x or java 1.5.x

- Ant 1.6+ (1.6.1+ if using Java 1.5). Packaged versions (RPM, deb) can have problems with preferring GCJ, so we recommend installing a clean copy. If you do, you may need to edit /etc/ant.conf or run ant --noconfig to use your clean version.

- The above two requirements suffice for the Core-only download. However, the rest of this guide does not apply to that download. Please see the Java WS Core Admin Guide if you are using a core-only source/binary download.

2. http://java.sun.com/j2se
8. http://jakarta.apache.org/ant
10. http://www.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html
Software Prerequisites

- C compiler. If gcc11, avoid version 3.2. 3.2.1 and 2.95.x are okay. gcc 4.1 has a bug that will trigger during the build of WS C (bug 12431512). You can recompile the globus.js package from the advisories page13, then run make again.

- C++ compiler. Use the version corresponding to your C compiler from the previous bullet.

- GNU tar14 - required before even extracting the installer.

- GNU sed15

- zlib 1.1.4+16

- GNU Make17

- Perl18 5.005 or newer. Some linux distributions may require additional perl library packages to be installed. Please see the prereq section specific to your linux distribution for details. In 4.0.5, XML::Parser is also required.

- sudo19

- JDBC compliant database. For instance, PostgreSQL20 7.1+

- gpt-3.2autotools2004 (shipped with the installers, but required if building standalone GPT bundles/packages)

2. Optional software

- IODBC21 (compile requirement for RLS)

- Tomcat22 (required at runtime by WebMDS, optional for other services) - Make sure to download it directly from the Apache web site. This is a runtime-only requirement, and is not required at compile-time.

- gLite23 Java VOMS parsing libraries - binary available24 (compile requirement for Workspace Service)

3. Platform Notes

In this section, the word "flavor" refers to a combination of compiler type (gcc or other), 32 or 64 bit libraries, and debugging enabled or not.

11 http://gcc.gnu.org
12 http://bugzilla.globus.org/globus/show_bug.cgi?id=4315
13 http://www.globus.org/toolkit/advisories.html
14 http://www.gnu.org/software/tar/tar.html
15 http://www.gnu.org/software/sed/sed.html
16 http://www.gzip.org/zlib/
17 http://www.gnu.org/software/make/
18 http://www.perl.org/
19 http://www.courtesan.com/sudo/
20 http://www.postgresql.org
21 http://www.iodbc.org/
22 http://jakarta.apache.org/tomcat/
23 http://glite.web.cern.ch/glite/security/
24 http://www.mcs.anl.gov/workspace/glite-security-util-java.jar
3.1. Apple MacOS X

Until GT4.0.4, Intel Macintosh machines have a problem with the "-verify" flag for grid-proxy-init (bug 4302\(^{25}\)). As a workaround, you can skip the -verify step. This was fixed in 4.0.4.

Macs may have trouble building RLS as shipped in GT4.0.5. One can either --disable-rls --disable-drs to turn off the RLS/DRS build, or apply a replica_rls_server_configure.patch\(^{26}\) patch to the RLS configure that should let it build successfully. Also, you will have to set JAVA_HOME to /System/Library/Frameworks/JavaVM.framework Versions/CurrentJDK/Home to get RLS to build its jar file.

3.2. Debian/Ubuntu

Some kernel/libc combinations trigger a threading problem. See bug #2194\(^{27}\). The workaround is to set LD_ASSUME_KERNEL=2.2.5 in your environment.

There is a more recent glibc/threading problem described in bug #5481\(^{28}\). The workaround for libc6-i686 and linux-image-2.6.18-3-686 is to set LD_ASSUME_KERNEL=2.4.19.

Some distros may not include some perl modules we use. "$ apt-get install libpod-*" should fix it, see bug 4387\(^{29}\).

3.3. Fedora Core

gcc 4.1 (the default compiler for FC5) has a bug that will trigger during the build of WS C (bug 4315\(^{30}\)). You can re-compile the globus_js package from the advisories page\(^{31}\), then run make again.

Change your default Java installation using the alternatives command. Here's one example of how to do it if you have already installed a non-GCJ version of the Java2 SDK into /usr/java/j2sdk1.4.2_08:

```
root# /usr/sbin/alternatives --install /usr/bin/java java /usr/java/j2sdk1.4.2_08/bin/java 2
root# /usr/sbin/alternatives --config java
There are 2 programs which provide 'java'.

     Selection Command
                      -----------------------------------------------
    *+ 1           /usr/lib/jvm/jre-1.4.2-gcj/bin/java
                   2           /usr/java/j2sdk1.4.2_08/bin/java
```

Enter to keep the current selection[+], or type selection number:

Choose selection 2 to change your default java version to the non-GCJ version.

3.4. FreeBSD

No known issues.

\(^{25}\) http://bugzilla.globus.org/globus/show_bug.cgi?id=4302
\(^{26}\) http://www.globus.org/ftppub/gt4/4.0/4.0.5/updates/src/replica_rls_server_configure.patch
\(^{27}\) http://bugzilla.globus.org/globus/show_bug.cgi?id=2194
\(^{28}\) http://bugzilla.globus.org/globus/show_bug.cgi?id=5481
\(^{29}\) http://bugzilla.globus.org/globus/show_bug.cgi?id=4387
\(^{30}\) http://bugzilla.globus.org/globus/show_bug.cgi?id=4315
\(^{31}\) http://www.globus.org/toolkit/advisories.html
3.5. HP/UX

Specify --with-flavor=vendorcc32 on the configure line. GNU tar, GNU sed, and GNU make are required on the PATH.

HP-UX 11.11 (11iv1) and 11.23 (11iv2) on PA-RISC:

- HP Ansi-C compiler, version B.11.11.14
- Java 1.5.0_02
- Apache Ant 1.6.2

HP-UX 11.23 (11iv2) on IA-64:

- HP ANSI-C compiler, version A.06.00
- Java 1.5.0_03
- Apache Ant 1.6.2

HP-UX 11.11 requires support for IPv6, which is part of the Transport Optional Upgrade Release (TOUR). This product can be obtained free-of-charge from the HP Software Depot (search keyword = "TOUR").

HP also supplies the Globus Toolkit as a pre-built software depot through its HP-UX Internet Express distribution. This product can be obtained free-of-charge from the HP Software Depot (search keyword = "globus").

For complete details about Globus on HP-UX, please consult the HP Globus Support page.

3.6. IBM AIX

AIX will have a build failure with 4.0.5 as tagged. One can either --disable-rls to turn off the RLS build, or apply a replica_rls_server_configure.patch patch to the RLS configure that lets it build successfully.

Supported flavors are vendorcc32dbg/vendorcc32 and vendorcc64dbg/vendorcc64 using the Visual Age compilers (xlc). GSI-OpenSSH will only build in the 32bit flavor, so disable it with --disable-gsiopensh for the 64bit build. No gcc flavors are supported. Specify a flavor using --with-flavor=flavor.

GNU sed, tar, and make are required before the IBM ones in the PATH.

The toolkit has been tested on AIX 5.2 with:

- Visual Age C/C++ 6.0
- 32 bit version of IBM Java 1.4
- Apache Ant 1.5.4
- tar-1.14, make-3.80, flex-2.5.4a, perl-5.8.5, bison-1.25, zlib-1.2.2

http://www.software.hp.com/
http://www.software.hp.com/
http://www.hp.com/products/globus
http://www.globus.org/ftp/pub/gt4/4.0.0/4.0.5/updates/src/replica_rls_server_configure.patch
3.7. Red Hat

When building from source on a Red Hat Enterprise line version 3 or 4 based OS, GPT might have a problem retrieving exit codes from subshells. You might see errors which says they were both successful and failed:

BUILD SUCCESSFUL
Total time: 11 seconds

ERROR: Build has failed
make: *** [globus_wsrfservicegroup] Error 10

The workaround is to configure with --with-buildopts="-verbose"

Depending on your perl installation, you may also require the XML::Parser module, available in the perl-XML-Parser RPM.

3.8. SGI Altix (IA64 running Red Hat)

Some extra environment variables are required for building MPI flavors. For the Intel compiler:

export CC=icc
export CFLAGS=-no-gcc
export CXX=icpc
export CXXFLAGS=-no-gcc
export LDFLAGS=-lmpi

For the GNU compiler:

export CC=gcc
export CXX=g++
export LDFLAGS=-lmpi

In both cases, configure with --with-flavor=mpicc64

3.9. Sun Solaris

Supported flavors are gcc32, gcc64, vendorcc32 and vendorcc64. The dbg flavors should work as well. For gcc64, a gcc built to target 64 bit object files is required. The gcc32dbg flavor will be used by default. Specify other flavors using --with-flavor=flavor.

For Solaris 10, you may need to use an updated GNU binutils, or the provided Sun /usr/ccs/bin/ld to link. See binutils bug 1031 for details on Solaris 10 symbol versioning errors.

For the GT4.0.7 build on x86 Solaris 10, a patch was applied to fix bug bug 3563, which causes openssl to fail to seed the PRNG with the symlinked /dev/urandom on Solaris 10.

GPT has problems with the Sun provided perl and tar. Use GNU tar, and if you're using Sun's tar, you must use the same compiler to build GT as they used to build perl.

http://sources.redhat.com/bugzilla/show_bug.cgi?id=1031
http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=3563
The toolkit has been tested on Solaris 9 with:

- Sun Workshop 6 update 2 C 5.3
- gcc 3.4.3
- Sun Java 1.4.2_02
- Apache Ant 1.5.4
- and: tar-1.14, patch-2.5.4, m4-1.4.1, flex-2.5.4a, make-3.80, byacc-1.9, gzip-1.2.4, coreutils-5.2.1, perl-5.8.5

3.10. SuSE Linux

No known issues.

3.11. Tru64 Unix

Specify --with-flavor=vendorcc64 on the configure line. GNU tar, GNU sed, and GNU make are required on the PATH.

The toolkit has been tested on Tru64 UNIX (V5.1A and V5.1B) with:

- HP C V6.4-009 and V6.5-003 compilers
- Java 1.4.2_04
- Apache Ant 1.6.2

For complete details about Globus on Tru64, please consult the HP Globus Support38 page.

3.12. Windows

Only Java-only components will build. Please choose the Java WS Core-only download and follow the instructions in the Java WS Core System Administrator's Guide39.

38 http://www.hp.com/products/globus
39 http://www.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html
Chapter 4. Installing GT 4.0

1. Create a user named "globus". This non-privileged user will be used to perform administrative tasks such as starting and stopping the container, deploying services, etc. Pick an installation directory, and make sure this account has read and write permissions in the installation directory.

 Tip

 You might need to create the target directory as root, then chown it to the globus user:

   ```
   # mkdir /usr/local/globus-4.0.1
   # chown globus:globus /usr/local/globus-4.0.1
   ```

 Important

 If for some reason you do not create a user named "globus", be sure to run the installation as a non-root user. In that case, make sure to pick an install directory that your user account has write access to.

2. Download the required software noted in Chapter 3, Software Prerequisites.

 Tip

 Be aware that Apache Ant will use the Java referred to by JAVA_HOME, not necessarily the first Java executable on your PATH. Be sure to set JAVA_HOME to the top-level directory of your Java installation before installing.

 Also, check the Section 3, “Platform Notes” if your OS includes ant already. Your `/etc/ant.conf` is probably configured to use gcj, which will fail to compile the Toolkit.

3. In this guide we will assume that you are installing to `/usr/local/globus-4.0.1`, but you may replace `/usr/local/globus-4.0.1` with whatever directory you wish to install to.

 As the globus user, run:

   ```
   globus$ export GLOBUS_LOCATION=/usr/local/globus-4.0.1
   globus$ ./configure --prefix=$GLOBUS_LOCATION
   ```

 You can use command line arguments to `./configure` for a more custom install. Here are the lines to enable features which are disabled by default:

 Optional Features:

   ```
   --enable-prewsmds
   --enable-wsgram-condor
   --enable-wsgram-lsf
   --enable-wsgram-pbs
   --enable-i18n
   --enable-drs
   ```

 Optional Packages:

 Build pre-webservices mds. Default is disabled.
 Build GRAM Condor scheduler interface. Default is disabled.
 Build GRAM LSF scheduler interface. Default is disabled.
 Build GRAM PBS scheduler interface. Default is disabled.
 Enable internationalization. Default is disabled.
 Enable Data Replication Service. Default is disabled.
For a full list of options, see `configure --help`. For a list of GSI-OpenSSH options, see Table 12.1, “GSI-OpenSSH build arguments”. For more information about our packaging or about choosing a flavor, see Appendix B, Packaging details.

4. Run:

```
$ globus$ make
```

Note that this command can take several hours to complete. If you wish to have a log file of the build, use `tee`:

```
$ globus$ make 2>&1 | tee build.log
```

The syntax above assumes a Bourne shell. If you are using another shell, redirect stderr to stdout and then pipe it to `tee`.

Note

Using make in parallel mode (-j) is not entirely safe, and is not recommended.

5. Finally, run:

```
$ globus$ make install
```

This completes your installation. Now you may move on to the configuration sections of the following chapters.

We recommend that you install any security advisories available for your installation, which are available from the [Advisories page](http://www.globus.org/toolkit/advisories.html). You may also be interested in subscribing to some [mailing lists](http://dev.globus.org/wiki/Mailing_Lists) for general discussion and security-related announcements.

Your next step is to setup security, which includes picking a CA to trust, getting host certificates, user certificates, and creating a grid-mapfile. The next three chapters cover these topics.

With security setup, you may start a GridFTP server, configure a database for RFT, and configure WS-GRAM. You may also start a GSI-OpenSSH daemon, setup a MyProxy server, run RLS, and use CAS. The following chapters will explain how to configure these technologies. If you follow the chapters in order, you will make sure of performing tasks in dependency order.

2. http://dev.globus.org/wiki/Mailing_Lists

1. Configuring

This section describes the configuration steps required to:

- Determine whether or not to trust certificates issued by a particular Certificate Authority (CA).
- Provide appropriate default values for use by the grid-cert-request command, which is used to generate certificates,
- Request service certificates, used by services to authenticate themselves to users, and
- Specify identity mapping information.

In general, Globus tools will look for a configuration file in a user-specific location first, and in a system-wide location if no user-specific file was found. The configuration commands described here may be run by administrators to create system-wide defaults and by individuals to override those defaults.

1.1. Configuring Globus to Trust a Particular Certificate Authority

The Globus tools will trust certificates issued by a CA if (and only if) it can find information about the CA in the trusted certificates directory. The trusted certificates directory is located as described in Credentials in Pre-WS A&A and exists either on a per machine or on a per installation basis. The following two files must exist in the directory for each trusted CA:

<table>
<thead>
<tr>
<th>Table 5.1. CA files</th>
</tr>
</thead>
<tbody>
<tr>
<td>cert_hash.0</td>
</tr>
<tr>
<td>cert_hash.signing_policy</td>
</tr>
</tbody>
</table>

Pre-WS Globus components will honor a certificate only if:

- its CA certificate exists (with the appropriate name) in the TRUSTED_CA directory, and
- the certificate's distinguished name matches the pattern described in the signing policy file.

In GT 4.0.x releases, up to GT 4.0.6 release, Java-based components ignore the signing policy file and will honor all valid certificates issued by trusted CAs. Since GT 4.0.7 release, Java components enforce signing policy as described in Java CoG Release Notes.¹

The cert_hash that appears in the file names above is the hash of the CA certificate, which can be found by running the command:

```
$GLOBUS_LOCATION/bin/openssl x509 -hash -noout < ca_certificate
```

Some CAs provide tools to install their CA certificates and signing policy files into the trusted certificates directory. You can, however, create a signing policy file by hand; the signing policy file has the following format:

```plaintext
access_id_CA X509 'CA Distinguished Name'
pos_rights globus CA:sign
cond_subjects globus '"Distinguished Name Pattern"'
```

In the above, the CA Distinguished Name is the subject name of the CA certificate, and the Distinguished Name Pattern is a string used to match the distinguished names of certificates granted by the CA. Some very simple wildcard matching is done: if the Distinguished Name Pattern ends with a '*', then any distinguished name that matches the part of the CA subject name before the '*' is considered a match. Note: the cond_subjects line may contain a space-separated list of distinguished name patterns.

A repository of CA certificates that are widely used in academic and research settings can be found here.

1.2. Configuring Globus to Create Appropriate Certificate Requests

The `grid-cert-request` command, which is used to create certificates, uses the following configuration files:

<table>
<thead>
<tr>
<th>Configuration File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>globus-user-ssl.conf</td>
<td>Defines the distinguished name to use for a user's certificate request. The format is described here.</td>
</tr>
<tr>
<td>globus-host-ssl.conf</td>
<td>Defines the distinguished name for a host (or service) certificate request. The format is described here.</td>
</tr>
<tr>
<td>grid-security.conf</td>
<td>A base configuration file that contains the name and email address for the CA.</td>
</tr>
<tr>
<td>directions</td>
<td>An optional file that may contain directions on using the CA.</td>
</tr>
</tbody>
</table>

Many CAs provide tools to install configuration files called `globus-user-ssl.conf.cert_hash`, `globus-host-ssl.conf.cert_hash`, `grid_security.conf.cert_hash`, and `directions.cert_hash` in the trusted certificates directory. The command:

```
grid-cert-request -ca cert_hash
```

will create a certificate request based on the specified CA's configuration files. The command:

```
grid-cert-request -ca
```

will list the available CAs and let the user choose which one to create a request for.

You can specify a default CA for certificate requests (i.e., a CA that will be used if `grid-cert-request` is invoked without the `-ca` flag) by making the following symbolic links (where `GRID_SECURITY` is the `grid security directory` and `TRUSTED_CA` is the `trusted CA directory`):

```bash
ln -s TRUSTED_CA/globus-user-ssl.conf.cert_hash \
GRID_SECURITY/globus-user-ssl.conf
ln -s TRUSTED_CA/globus-host-ssl.conf.cert_hash \
```

2 https://www.tacar.org/certs.html
3 http://www.openssl.org/docs/apps/req.html#CONFIGURATION_FILE_FORMAT
4 http://www.openssl.org/docs/apps/req.html#CONFIGURATION_FILE_FORMAT
GRID_SECURITY/globus-host-ssl.conf
ln -s TRUSTED_CA/grid_security.conf.cert_hash \ GRID_SECURITY/grid_security.conf

And optionally, if the CA specific directions file exists:
ln -s TRUSTED_CA/directions.cert_hash \ GRID_SECURITY/directions

This can also be accomplished by invoking the grid-default-ca command.

The directions file may contain specific directions on how to use the CA. There are three types of printed messages:

- **REQUEST HEADER**, printed to a certificate request file,
- **USER INSTRUCTIONS**, printed on the screen when one requests a user certificate,
- **NONUSER INSTRUCTIONS**, printed on the screen when one requests a certificate for a service.

Each message is delimited from others with lines ----- BEGIN message type TEXT ----- and ----- END message type TEXT ----- For example, the directions file would contain the following lines:

----- BEGIN REQUEST HEADER TEXT -----
This is a Certificate Request file
It should be mailed to ${GSI_CA_EMAIL_ADDR}
----- END REQUEST HEADER TEXT -----

If this file does not exist, the default messages are printed.

1.3. Requesting Service Certificates

Different CAs use different mechanisms for issuing end-user certificates; some use mechanisms that are entirely web-based, while others require you to generate a certificate request and send it to the CA. If you need to create a certificate request for a service certificate, you can do so by running:

grid-cert-request -host hostname -service service_name

where *hostname* is the fully-qualified name of the host on which the service will be running, and *service_name* is the name of the service. This will create the following three files:

Table 5.3. Certificate request files

<table>
<thead>
<tr>
<th>File Path</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID_SECURITY/service_name/service_namecert.pem</td>
<td>An empty file. When you receive your actual service certificate from your CA, you should place it in this file.</td>
</tr>
<tr>
<td>GRID_SECURITY/service_name/service_namecert_request.pem</td>
<td>The certificate request, which you should send to your CA.</td>
</tr>
<tr>
<td>GRID_SECURITY/service_name/service_namekey.pem</td>
<td>The private key associated with your certificate request, encrypted with the pass phrase that you entered when prompted by grid-cert-request.</td>
</tr>
</tbody>
</table>

The grid-cert-request command recognizes several other useful options; you can list these with:

grid-cert-request -help
1.4. Specifying Identity Mapping Information

Several Globus services map distinguished names (found in certificates) to local identities (e.g., unix logins). These mappings are maintained in the gridmap file. The gridmap file is discovered according to the rules described in Credentials in Pre-WS A&A. A gridmap line of the form:

"Distinguished Name" local_name

maps the distinguished name Distinguished Name to the local name local_name. A gridmap line of the form:

"Distinguished Name" local_name1,local_name2

maps Distinguished Name to both local_name1 and local_name2; any number of local user names may occur in the comma-separated local name list.

Several tools exist to manage grid map files. To add an entry to the grid map file, run:

$GLOBUS_LOCATION/sbin/grid-mapfile-add-entry
 -dn "Distinguished Name" \
 -ln local_name

To delete an entry from the gridmap file, run:

$GLOBUS_LOCATION/sbin/grid-mapfile-delete-entry
 -dn "Distinguished Name" \
 -ln local_name

To check the consistency of the gridmap file, run:

$GLOBUS_LOCATION/sbin/grid-mapfile-check-consistency

These commands recognize several useful options, including a -help option, which lists detailed usage information.

The location of the gridmap file is determined as follows:

1. If the GRIDMAP environment variable is set, the gridmap file location is the value of the environment variable.
2. Otherwise:
 - If the user is root (uid 0), then the gridmap file is /etc/grid-security/grid-mapfile.
 - Otherwise, the gridmap file is $HOME/.gridmap.

1.5. Configuring Certificate Revocation Lists (CRLs)

The Globus Toolkit supports CRLs on both the client and server side. CRL support is optional, however if a CRL file is present it must be correctly formatted or it will cause an error to be raised and certificates from CA the CRL is associated with, will not be honored.

1.5.1. CRL Filename

A CRL file should be stored in the trusted certificates directory alongside the file containing the trusted CA certificated it is associated with (normally this is /etc/grid-security/certificates). The filename of the CRL file should be the same basename of the associated CA certificate file, but with a ".r0" extension.
For example if a CA certificate was stored in 42864e48.0 the CRL for that CA should be stored in 42864e48.r0.

1.5.2. CRL Expiration

Globus treats the "Next Update" field of the CRL as an expiration field. If the time in the Next Update field has past Globus will treat the CRL as invalid and cease to accept certificates issued by the CA associated with the CRL in question.

1.5.3. CRL Format

The CRL should be stored in base-64 encoded PEM. The file should look like the example below. Note that the BEGIN and END lines are significant and must appear exactly as shown. Any text before the BEGIN line or after the END line ignored.

```
-----BEGIN X509 CRL-----
MIIDQTCCAIkDQYJKoZIhvcNAQEFBQAwTETMBEGCgmsJfomT8ixkARkWA25ldDESMBAGCgmsJfomT8ixkARkWaMzMSAwgYDVQQLRsd2ZkxJAw2PyZ2FOZSBdXRoAo3JpdGl1czEzMBcGA1UECxMQRE9F
IFNgxVzUyR3JpZDNOAsGA1UEAEhGtpMRcNMdIwNTA5MjAwMjM2WYhCMdIwWsjA4MjAwMjM2
WjCCAYEwEgIBBcNMDIwMzE5MTcyNjI4WjASAgFbFW0wMjAzMTkwMDA0NDJAMRBCASUXDTAYMDIx
MjIwMTkzMuowEgICVAKXDTAyMDUwNiZiMzAxNFowEgIBUBcNMdIwMsYmJAzMjM4WjJAgIAhAc
MDIwNTA3MjMyMjM5WjASAgFPFW0wMjAzMjcxMVowEgIBSRCNmDlIwMsE0MjI0TQAzWjASAgF2FW0wMjA0MDgxOTMwMzNaMBMCAgChFW0wMjA0MzAyMDQwMjVa
MBICARMDXDTAyMDExMTQwFW0wEgICVAKXDTAyMDQwMDIwNDAYNgVwEgIBEhCNMIDwMTI5MTk1
MjIwMTJAgIAhAcNMdIwNTA5MjMyMjM2WjASAgENFW0wMjAzMjgyMzE0NDZAMRBCASUXDTAYMDMw
NTE5NDEwIiwEIGBoCndMiwMzE5MjMxOTI5WjASAgE3FW0wMjAzMDgyMDE4NDhAMRBCASgGSIh3
DQEBQQAA4IBAQQWt6fD7AsvcmuTszx9GWFBwFIR3CCCG7yQU0dBS00J13guKH4tLqClHy0gKbM
7xeE+5oKrcuw2dMQpseKO6GYVVAECqDckZL62kmI/7cTbXryKJRqB7GF6MC+uxC0bTCltpC
tBy82yakUW/CJYOurMzhyc8SxzJxz7WYKycziq5z1VBvkO7ksS1JGy08ABWSmPBL3u3CG6
Lz7aV/GiMhE20eQXRW++9256NhkT2PITYT45c/UFW1wyACLq23C5u/R5e1sqpK5BcmAPqId957b9
+g7I9/ZsxjizRN1EPZ3wu6XHWvpc2TSLG95B+r10TDNzxEKho1Rc
-----END X509 CRL-----
```

1.6. GSI File Permissions Requirements

- **End Entity (User, Host and Service) Certificates and the GSI Authorization Callout Configuration File:**
 - May not be executable
 - May not be writable by group and other
 - Must be either regular files or soft links

- **Private Keys and Proxy Credentials:**
 - Must be owned by the current (effective) user
 - May not be executable
 - May not be readable by group and other
 - Must be either regular files or soft links
• **CA Certificates**, **CA Signing Policy Files**, the **Grid Map File** and the **GAA Configuration File**:

 • Must be either regular files or soft links

 • GSI Authorization callout configuration files

 • Must exist

 • Should be world readable

 • Should not be writable by group and other

 • Should be either a regular file or a soft link

 • GSI GAA configuration files

 • Must exist

 • Should be world readable

 • Should not be writable by group and other

 • Should be either a regular file or a soft link

2. Deploying

This section is not applicable.

3. Testing

There is no content available at this time.

4. Security Considerations

During host authorization, the toolkit treats DNs "hostname-*.edu" as equivalent to "hostname.edu". This means that if a service was setup to do host authorization and hence accept the certificate "hostname.edu", it would also accept certificates with DNs "hostname-*.edu".

The feature is in place to allow a multi-homed host following a "hostname-interface" naming convention to have a single host certificate. For example, host "grid.test.edu" would also accept the likes of "grid-1.test.edu" or "grid-foo.test.edu".

Note

The wildcard character "*" matches only the name of the host and not the domain components. This means that "hostname.edu" will not match "hostname-foo.sub.edu" but will match "host-foo.edu".

Note

If a host was set up to accept "hostname-1.edu", it will not accept any of "hostname-*.edu".

A bug\(^5\) has been opened to see if this feature needs to be modified.

\(^5\) [http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=2969]
5. Troubleshooting

5.1. Credential Errors

The following are some common problems that may cause clients or servers to report that credentials are invalid:

5.1.1. Your proxy credential may have expired

Use `grid-proxy-info` to check whether the `proxy credential` has actually expired. If it has, generate a new proxy with `grid-proxy-init`.

5.1.2. The system clock on either the local or remote system is wrong

This may cause the server or client to conclude that a credential has expired.

5.1.3. Your `end-user certificate` may have expired

Use `grid-cert-info` to check your certificate's expiration date. If it has expired, follow your CA's procedures to get a new one.

5.1.4. The permissions may be wrong on your proxy file

If the permissions on your proxy file are too lax (for example, if others can read your proxy file), Globus Toolkit clients will not use that file to authenticate. You can "fix" this problem by changing the permissions on the file or by destroying it (with `grid-proxy-destroy`) and creating a new one (with `grid-proxy-init`). However, it is still possible that someone else has made a copy of that file during the time that the permissions were wrong. In that case, they will be able to impersonate you until the proxy file expires or your permissions or end-user certificate are revoked, whichever happens first.

5.1.5. The permissions may be wrong on your private key file

If the permissions on your end user certificate `private key` file are too lax (for example, if others can read the file), `grid-proxy-init` will refuse to create a `proxy certificate`. You can "fix" this by changing the permissions on the private key file; however, you will still have a much more serious problem: it's possible that someone has made a copy of your private key file. Although this file is encrypted, it is possible that someone will be able to decrypt the private key, at which point they will be able to impersonate you as long as your end user certificate is valid. You should contact your CA to have your end-user certificate revoked and get a new one.

5.1.6. The remote system may not trust your CA

Verify that the remote system is configured to trust the CA that issued your end-entity certificate. See the Administrator's Guide for details.

5.1.7. You may not trust the remote system's CA

Verify that your system is configured to trust the remote CA (or that your environment is set up to trust the remote CA). See the Administrator's Guide for details.

6 http://www.globus.org/toolkit/docs/4.0/admin/docbook/
7 http://www.globus.org/toolkit/docs/4.0/admin/docbook/
5.1.8. There may be something wrong with the remote service's credentials

It is sometimes difficult to distinguish between errors reported by the remote service regarding your credentials and errors reported by the client interface regarding the remote service's credentials. If you can't find anything wrong with your credentials, check for the same conditions (or ask a remote administrator to do so) on the remote system.

5.2. Some tools to validate certificate setup

5.2.1. Check that the user certificate is valid

openssl verify -CApath /etc/grid-security/certificates
 -purpose sslclient ~/.globus/usercert.pem

5.2.2. Connect to the server using s_client

openssl s_client -ssl3 -cert ~/.globus/usercert.pem -key ~/.globus/userkey.pem -CApath /etc/grid-security/certificates -connect <host:port>

Here <host:port> denotes the server and port you connect to.

If it prints an error and puts you back at the command prompt, then it typically means that the server has closed the connection, i.e. that the server was not happy with the client's certificate and verification. Check the SSL log on the server.

If the command "hangs" then it has actually opened a telnet style (but secure) socket, and you can "talk" to the server.

You should be able to scroll up and see the subject names of the server's verification chain:

depth=2 /DC=net/DC=ES/O=ESnet/OU=Certificate Authorities/CN=ESnet Root CA 1
verify return:1
depth=1 /DC=org/DC=DOEGrids/OU=Certificate Authorities/CN=DOEGrids CA 1
verify return:1
depth=0 /DC=org/DC=doegrids/OU=Services/CN=wiggum.mcs.anl.gov
verify return:1

In this case there were no errors. Errors would give you an extra line next to the subject name of the certificate that caused the error.

5.2.3. Check that the server certificate is valid

Requires root login on server.

openssl verify -CApath /etc/grid-security/certificates -purpose sslserver /etc/grid-security/hostcert.pem

5.3. Grid map errors

The following are some common problems that may cause clients or servers to report that user are not authorized:
5.3.1. The content of the grid map file does not conform to the expected format

Use grid-mapfile-check-consistency to make sure that your gridmap conforms to the expected format.

5.3.2. The grid map file does not contain an entry for your DN

Use grid-mapfile-add-entry to add the relevant entry.

6. Environment variable interface

6.1. Credentials

Credentials are looked for in the following order:

1. service credential
2. host credential
3. proxy credential
4. user credential

X509_USER_PROXY specifies the path to the proxy credential. If X509_USER_PROXY is not set, the proxy credential is created (by grid-proxy-init) and searched for (by client programs) in an operating-system-dependent local temporary file.

X509_USER_CERT and X509_USER_KEY specify the path to the end entity (user, service, or host) certificate and corresponding private key. The paths to the certificate and key files are determined as follows:

For service credentials:

1. If X509_USER_CERT and X509_USER_KEY exist and contain a valid certificate and key, those files are used.
2. Otherwise, if the files /etc/grid-security/service/servicecert and /etc/grid-security/service/servicekey exist and contain a valid certificate and key, those files are used.
3. Otherwise, if the files $GLOBUS_LOCATION/etc/grid-security/service/servicecert and $GLOBUS_LOCATION/etc/grid-security/service/servicekey exist and contain a valid certificate and key, those files are used.
4. Otherwise, if the files service/servicecert and service/servicekey in the user's .globus directory exist and contain a valid certificate and key, those files are used.

For host credentials:

1. If X509_USER_CERT and X509_USER_KEY exist and contain a valid certificate and key, those files are used.
2. Otherwise, if the files /etc/grid-security/hostcert.pem and /etc/grid-security/hostkey.pem exist and contain a valid certificate and key, those files are used.
3. Otherwise, if the files $GLOBUS_LOCATION/etc/grid-security/hostcert.pem and $GLOBUS_LOCATION/etc/grid-security/hostkey.pem exist and contain a valid certificate and key, those files are used.
4. Otherwise, if the files hostcert.pem and hostkey.pem in the user's .globus directory, exist and contain a valid certificate and key, those files are used.

For user credentials:

1. If X509_USER_CERT and X509_USER_KEY exist and contain a valid certificate and key, those files are used.
2. Otherwise, if the files usercert.pem and userkey.pem exist in the user's .globus directory, those files are used.
3. Otherwise, if a PKCS-12 file called usercred.p12 exists in the user's .globus directory, the certificate and key are read from that file.

6.2. Gridmap file

GRIDMAP specifies the path to the grid map file, which is used to map distinguished names (found in certificates) to local names (such as login accounts). The location of the grid map file is determined as follows:

1. If the GRIDMAP environment variable is set, the grid map file location is the value of that environment variable.
2. Otherwise:
 • If the user is root (uid 0), then the grid map file is /etc/grid-security/grid-mapfile.
 • Otherwise, the grid map file is $HOME/.gridmap.

6.3. Trusted CAs directory

X509_CERT_DIR is used to specify the path to the trusted certificates directory. This directory contains information about which CAs are trusted (including the CA certificates themselves) and, in some cases, configuration information used by grid-cert-request to formulate certificate requests. The location of the trusted certificates directory is determined as follows:

1. If the X509_CERT_DIR environment variable is set, the trusted certificates directory is the value of that environment variable.
2. Otherwise, if $HOME/.globus/certificates exists, that directory is the trusted certificates directory.
3. Otherwise, if /etc/grid-security/certificates exists, that directory is the trusted certificates directory.
4. Finally, if $GLOBUS_LOCATION/share/certificates exists, then it is the trusted certificates directory.

6.4. GSI authorization callout configuration file

GSI_AUTHZ_CONF is used to specify the path to the GSI authorization callout configuration file. This file is used to configure authorization callouts used by both the gridmap and the authorization API. The location of the GSI authorization callout configuration file is determined as follows:

1. If the GSI_AUTHZ_CONF environment variable is set, the authorization callout configuration file location is the value of this environment variable.
2. Otherwise, if /etc/grid-security/gsi-authz.conf exists, then this file is used.
3. Otherwise, if $GLOBUS_LOCATION/etc/gsi-authz.conf exists, then this file is used.
4. Finally, if \$HOME/.gsi-authz.conf exists, then this file is used.

6.5. GAA (Generic Authorization and Access control) configuration file

GSI_GAA_CONF is used to specify the path to the GSI GAA (Generic Authorization and Access control) configuration file. This file is used to configure policy language specific plugins to the GAA-API. The location of the GSI GAA configuration file is determined as follows:

1. If the GSI_GAA_CONF environment variable is set, the GAA configuration file location is the value of this environment variable.
2. Otherwise, if /etc/grid-security/gsi-gaa.conf exists, then this file is used.
3. Otherwise, if \$GLOBUS_LOCATION/etc/gsi-gaa.conf exists, then this file is used.
4. Finally, if \$HOME/.gsi-gaa.conf exists, then this file is used.

6.6. Grid security directory

GRID_SECURITY_DIR specifies a path to a directory containing configuration files that specify default values to be placed in certificate requests. This environment variable is used only by the grid-cert-request and grid-default-ca commands.

The location of the grid security directory is determined as follows:

1. If the GRID_SECURITY_DIR environment variable is set, the grid security directory is the value of that environment variable.
2. If the configuration files exist in /etc/grid-security, the grid security directory is that directory.
3. If the configuration files exist in \$GLOBUS_LOCATION/etc, the grid security directory is that directory.
Chapter 6. Basic Security Configuration

1. Set environment variables

In order for the system to know the location of the Globus Toolkit commands you just installed, you must set an environment variable and source the `globus-user-env.sh` script.

1. As globus, set `GLOBUS_LOCATION` to where you installed the Globus Toolkit. This will be one of the following:
 - Using Bourne shells:

     ```bash
     globus$ export GLOBUS_LOCATION=/path/to/install
     ```
 - Using csh:

     ```bash
     globus$ setenv GLOBUS_LOCATION /path/to/install
     ```

2. Source `$GLOBUS_LOCATION/etc/globus-user-env.{sh,csh}` depending on your shell.
 - Use `.sh` for Bourne shell:

     ```bash
     globus$ . $GLOBUS_LOCATION/etc/globus-user-env.sh
     ```
 - Use `.csh` for C shell.

     ```bash
     globus$ source $GLOBUS_LOCATION/etc/globus-user-env.csh
     ```

2. Obtain host certificates

You must have X509 certificates to use the GT 4.0 software securely (referred to in this documentation as host certificates). For an overview of certificates for GSI (security) see GSI Configuration Information and GSI Environmental Variables.

Host certificates must:

- consist of the following two files: `hostcert.pem` and `hostkey.pem`
- be in the appropriate directory for secure services: `/etc/grid-security/`
- be for a machine which has a consistent name in DNS; you should not run it on a computer using DHCP where a different name could be assigned to your computer.

You have the following options:

2.1. Request a certificate from an existing CA

Your best option is to use an already existing CA. You may have access to one from the company you work for or an organization you are affiliated with. Some universities provide certificates for their members and affiliates. Contact
your support organization for details about how to acquire a certificate. You may find your CA listed in the [TERENA Repository](http://www.tacar.org/).

If you already have a CA, you will need to follow their configuration directions. If they include a CA setup package, follow the CAs instruction on how to install the setup package. If they do not, you will need to create an `/etc/grid-security/certificates` directory and include the CA cert and signing policy in that directory. See [Configuring a Trusted CA](http://www.globus.org/toolkit/docs/4.0/security/prewsaa/admin-index.html#id2828765) for more details.

This type of certificate is best for service deployment and Grid inter-operation.

2.2. SimpleCA

SimpleCA provides a wrapper around the OpenSSL CA functionality and is sufficient for simple Grid services. Alternatively, you can use OpenSSL's `CA.sh` command on its own. Instructions on how to use the SimpleCA can be found in Chapter 7, *SimpleCA Admin Guide*.

SimpleCA is suitable for testing or when a certificate authority is not available.

2.3. Low-trust certificate

Globus offers a low-trust certificate available at http://gcs.globus.org:8080/gcs. This option should only be used as a last resort because it does not fulfill some of the duties of a real Certificate Authority.

This type of certificate is best suited for short term testing.

3. Make the host credentials accessible by the container

The host key (`/etc/grid-security/hostkey.pem`) is only readable to root. The container (hosting environment) will be running as a non-root user (probably the `globus` user) and in order to have a set of host credentials which are readable by the container, we need to copy the host certificate and key and change the ownership to the container user.

Note

This step assumes you have obtained a signed host certificate from your CA.

As root, run:

```
root# cd /etc/grid-security
root# cp hostkey.pem containerkey.pem
root# cp hostcert.pem containercert.pem
root# chown globus.globus containerkey.pem containercert.pem
```

At this point the certificates in `/etc/grid-security` should look something like:

```
root# ls -l *.pem
-rw-r--r-- 1 globus globus 1785 Oct 14 14:47 containercert.pem
-r-------- 1 globus globus 887 Oct 14 14:47 containerkey.pem
-rw-r--r-- 1 root root 1785 Oct 14 14:42 hostcert.pem
-r-------- 1 root root 887 Sep 29 09:59 hostkey.pem
```

2. [http://www.globus.org/toolkit/docs/4.0/security/prewsaa/admin-index.html#id2828765]
4. Add authorization

Add authorizations for users:

Create `/etc/grid-security/grid-mapfile` as root.

You need two pieces of information:

- the subject name of a user
- the account name it should map to.

The syntax is one line per user, with the certificate subject followed by the user account name.

Run `grid-cert-info` to get your subject name, and `whoami` to get the account name:

```
bacon$ grid-cert-info -subject
/O=Grid/OU=GlobusTest/OU=simpleCA-mayed.mcs.anl.gov/OU=mcs.anl.gov/CN=Charles Bacon
bacon$ whoami
bacon
```

You may add the line by running the following as root:

```
root# $GLOBUS_LOCATION/sbin/grid-mapfile-add-entry -dn 
"/O=Grid/OU=GlobusTest/OU=simpleCA-mayed.mcs.anl.gov/OU=mcs.anl.gov/CN=Charles Bacon" 
-ln bacon
```

The corresponding line in the `grid-mapfile` should look like:

```
"/O=Grid/OU=GlobusTest/OU=simpleCA-mayed.mcs.anl.gov/OU=mcs.anl.gov/CN=Charles Bacon" bacon
```

⚠️ Important

The quotes around the subject name are important, because it contains spaces.

5. Verify Basic Security

Now that you have installed a trusted CA, acquired a hostcert and acquired a usercert, you may verify that your security setup is complete. As your user account, run the following command:

```
bacon$ grid-proxy-init -verify -debug
```

User Cert File: /home/bacon/.globus/usercert.pem
User Key File: /home/bacon/.globus/userkey.pem

Trusted CA Cert Dir: /etc/grid-security/certificates

Output File: /tmp/x509up_u506
Your identity: /DC=org/DC=doegrids/OU=People/CN=Charles Bacon 332900
Enter GRID pass phrase for this identity:
Creating proxy ...++++++++++++
..................++++++++++++
Done
Proxy Verify OK
Your proxy is valid until: Fri Jan 28 23:13:22 2005

There are a few things you can notice from this command. Your usercert and key are located in $HOME/.globus/. The proxy certificate is created in /tmp/. The "up" stands for "user proxy", and the _u506 will be your UNIX userid. It also prints out your distinguished name (DN), and the proxy is valid for 12 hours.

If this command succeeds, your single node is correctly configured.

6. Firewall configuration

For information on configuring services in the presence of a firewall, see the firewall PDF[^3].

7. Syslog logging

The GT4 webservice container is capable of logging authorization decisions to syslog. This procedure has been documented as a Grid HOWTO[^4] at NCSA.

[^3]: http://www.globus.org/toolkit/security/firewalls/
[^4]: http://security.ncsa.uiuc.edu/research/grid-howtos/gt4logging.php
Chapter 7. SimpleCA Admin Guide

1. Building and Installing

SimpleCA provides a wrapper around the OpenSSL CA functionality and is sufficient for simple Grid services. Alternatively, you can use OpenSSL’s CA.sh command on its own. SimpleCA is suitable for testing or when a certificate authority (CA) is not available. You can find other CA options in Obtaining host certificates.

1.1. Create users

Make sure you have the following users on your machine:

- Your user account, which will be used to run the client programs.
- A generic globus account, which will be used to perform administrative tasks such as starting and stopping the container, deploying services, etc. This user will also be in charge of managing the SimpleCA. To do this, make sure this account has read and write permissions in the $GLOBUS_LOCATION directory.

1.2. Run the setup script

A script was installed to set up a new SimpleCA. You only need to run this script once per Grid.

Run the setup script:

$GLOBUS_LOCATION/setup/globus/setup-simple-ca

1.2.1. Configure the subject name

This script prompts you for information about the CA you wish to create:

The unique subject name for this CA is:

cn=Globus Simple CA, ou=simpleCA-mayed.mcs.anl.gov, ou=GlobusTest, o=Grid

Do you want to keep this as the CA subject (y/n) [y]:

where:

Table 7.1. CA Name components

<table>
<thead>
<tr>
<th></th>
<th>Represents "common name". It identifies this particular certificate as the CA certificate within the "GlobusTest/simpleCA-hostname" domain, which in this case is Globus Simple CA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cn</td>
<td>Represents "organizational unit". It identifies this CA from other CAs created by SimpleCA by other people. The second "ou" is specific to your hostname (in this case GlobusTest).</td>
</tr>
<tr>
<td>ou</td>
<td>Represents "organization". It identifies the Grid.</td>
</tr>
</tbody>
</table>

Press y to keep the default subject name (recommended).

1 http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch06.html#s-basic-host
1.2.2. Configure the CA's email

The next prompt looks like:

Enter the email of the CA (this is the email where certificate requests will be sent to be signed by the CA):

Enter the email address where you intend to receive certificate requests. It should be your real email address that you check, not the address of the globus user.

1.2.3. Configure the expiration date

Then you'll see:

The CA certificate has an expiration date. Keep in mind that once the CA certificate has expired, all the certificates signed by that CA become invalid. A CA should regenerate the CA certificate and start re-issuing ca-setup packages before the actual CA certificate expires. This can be done by re-running this setup script. Enter the number of DAYS the CA certificate should last before it expires. [default: 5 years (1825 days)]:

This is the number of days for which the CA certificate is valid. Once this time expires, the CA certificate will have to be recreated and all of its certificates regranted.

Accept the default (recommended).

1.2.4. Enter a passphrase

Next you'll see:

Generating a 1024 bit RSA private key
.........+++++
.........+++++
writing new private key to '/home/globus/.globus/simpleCA/private/cakey.pem'
Enter PEM pass phrase:

The passphrase of the CA certificate will be used only when signing certificates (with grid-cert-sign). It should be hard to guess, as its compromise may compromise all the certificates signed by the CA.

Enter your passphrase.

⚠️ Important:

Your passphrase must not contain any spaces.

1.2.5. Confirm generated certificate

Finally you'll see the following:
A self-signed certificate has been generated for the Certificate Authority with the subject:

/O=Grid/OU=GlobusTest/OU=simpleCA-mayed.mcs.anl.gov/CN=Globus Simple CA

If this is invalid, rerun this script

setup/globus/setup-simple-ca

and enter the appropriate fields.

The private key of the CA is stored in /home/globus/.globus/simpleCA/private/cakey.pem
The public CA certificate is stored in /home/globus/.globus/simpleCA/cacert.pem
The distribution package built for this CA is stored in

/home/globus/.globus/simpleCA/globus_simple_ca_68ea3306_setup-0.17.tar.gz

This information will be important for setting up other machines in your grid. The number 68ea3306 in the last line is known as your CA hash. It will be an 8 hexadecimal digit string.

Press any key to acknowledge this screen.

Your CA setup package finishes installing and ends the procedure with the following reminder:

**

Note: To complete setup of the GSI software you need to run the following script as root to configure your security configuration directory:

/opt/gt4/setup/globus_simple_ca_68ea3306_setup/setup-gsi

For further information on using the setup-gsi script, use the -help option. The -default option sets this security configuration to be the default, and -nonroot can be used on systems where root access is not available.

**

setup-ssl-utils: Complete

We'll run the setup-gsi script in the next section. For now, just notice that it refers to your $GLOBUS_LOCATION and the CA Hash from the last message.

1.2.6. Complete setup of GSI

To finish the setup of GSI, we'll run the script noted in the previous step.
Run the following as root (or, if no root privileges are available, add the `-nonroot` option to the command line):

```
$GLOBUS_LOCATION/setup/globus_simple_ca_CA_Hash_setup/setup-gsi -default
```

The output should look like:

```
setup-gsi: Configuring GSI security
Installing /etc/grid-security/certificates//grid-security.conf.CA_Hash...
Running grid-security-config...
Installing Globus CA certificate into trusted CA certificate directory...
Installing Globus CA signing policy into trusted CA certificate directory.
setup-gsi: Complete
```

1.3. Host certificates

You must request and sign a host certificate and then copy it into the appropriate directory for secure services. The certificate must be for a machine which has a consistent name in DNS; you should not run it on a computer using DHCP, where a different name could be assigned to your computer.

1.3.1. 3.1 Request a host certificate

As root, run:

```
grid-cert-request -host 'hostname'
```

This creates the following files:

- `/etc/grid-security/hostkey.pem`
- `/etc/grid-security/hostcert_request.pem`
- (an empty) `/etc/grid-security/hostcert.pem`

Note: If you are using your own CA, follow their instructions about creating a hostcert (one which has a commonName (CN) of your hostname), then place the cert and key in the `/etc/grid-security/` location. You may then proceed to [Section 1.4, “User certificates”](#).

1.3.2. Sign the host certificate

1. As globus, run:

   ```
   grid-ca-sign -in hostcert_request.pem -out hostsigned.pem
   ```

2. A signed host certificate, named `hostssigned.pem`, is written to the current directory.

3. When prompted for a passphrase enter the one you specified in [Section 1.2.4, “Enter a passphrase”](#) (for the private key of the CA certificate).

4. As root move the signed host certificate to `/etc/grid-security/hostcert.pem`.

The certificate should be owned by root and be read-only for other users.

The key should be read-only by root.
1.4. User certificates

Users also must request *user certificates*, which you will sign using the *globus* user.

1.4.1. Request a user certificate

As your normal user account (*not globus*), run:

```
grid-cert-request
```

After you enter a passphrase, this creates

- `~$USER/.globus/usercert.pem` (empty)
- `~$USER/.globus/userkey.pem`
- `~$USER/.globus/usercert_request.pem`

Email the `usercert_request.pem` file to the SimpleCA maintainer.

1.4.2. Sign the user certificate

1. As the SimpleCA owner *globus*, run:

```
grid-ca-sign -in usercert_request.pem -out signed.pem
```

2. When prompted for a password enter the one specified in Section 1.2.4, “Enter a passphrase” (for the private key of the CA certificate).

3. Now send the signed copy (*signed.pem*) back to the user who requested the certificate.

4. As your normal user account (*not globus*), copy the signed user certificate into `~/.globus/` and rename it as `usercert.pem`, thus replacing the empty file.

The certificate should be owned by the user and be read-only for other users.

The key should be read-only by the owner.

2. Configuring

[high-level characterization of the configuration options for the component here]

2.1. Configure SimpleCA for multiple machines

So far, you have a single machine configured with SimpleCA certificates. Recall that in Section 1.2.5, “Confirm generated certificate” a CA setup package was created in `./globus/simpleCA/globus_simple_ca_HASH_setup-0.17.tar.gz`. If you want to use your certificates on another machine, you must install that CA setup package on that machine.

To install it, copy that package to the second machine and run:

```
$GLOBUS_LOCATION/sbin/gpt-build globus_simple_ca_HASH_setup-0.17.tar.gz gcc32dbg
$GLOBUS_LOCATION/sbin/gpt-postinstall
```
Then you will have to perform **setup-gsi -default** from Section 1.2.6, “Complete setup of GSI”.

If you are going to run services on the second host, it will need its own host certificate (Section 1.3, “Host certificates”) and grid-mapfile (as described in the basic configuration instructions in Add Authorization\(^2\)).

You may re-use your *user certificates* on the new host. You will need to copy the requests to the host where the SimpleCA was first installed in order to sign them.

3. Deploying

[information about deploying the component into various containers/environments]

4. Testing

To verify that the SimpleCA certificate is installed in `/etc/grid-security/certificates` and that your certificate is in place with the correct permissions, run:

```
user$ grid-proxy-init -debug -verify
```

After entering your passphrase, successful output looks like:

```
[bacon@mayed schedulers]$ grid-proxy-init -debug -verify

User Cert File: /home/user/.globus/usercert.pem
User Key File: /home/user/.globus/userkey.pem

Trusted CA Cert Dir: /etc/grid-security/certificates

Output File: /tmp/x509up_u1817
Your identity: /O=Grid/OU=GlobusTest/OU=simpleCA-mayed.mcs.anl.gov/OU=mcs.anl.gov/CN=User Name
Enter GRID pass phrase for this identity:
Creating proxy ..................................++++++++++++
.................................................++++++++++++
Done
Proxy Verify OK
Your proxy is valid until: Sat Mar 20 03:01:46 2004
```

5. Security Considerations

[describe security considerations relevant for this component]

6. Troubleshooting

[help for common problems sysadmins may experience]

\(^2\) http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch06.html#s-basic-gridmap
Chapter 8. GridFTP Admin Guide

1. Building and Installing

GridFTP is built and installed as part of a default GT 4.0 installation. For basic installation instructions, see the GT 4.0 System Administrator's Guide

1.1. Building only GridFTP and Utilities

If you wish to install GridFTP without installing the rest of the Globus Toolkit, refer to the Installing GT 4.0 section of the GT 4.0 System Administrator's Guide. Perform steps 1-3, as written (Note that you do not need Ant, a JDK, or a JDBC database to build only GridFTP). However, instead of running "make" as directed in step 4,

Run:

globus$ make gridftp

If you wish to have a log file of the build, use tee:

globus$ make gridftp 2>&1 | tee build.log

The syntax above assumes a Bourne shell. If you are using another shell, redirect stderr to stdout and then pipe it to tee.

1.2. Building only the GridFTP server

If you wish to install only the GridFTP server, refer to the Installing GT 4.0 section of the GT 4.0 System Administrator's Guide for prerequisites. Follow steps 1-3 as written. However, instead of running "make" as directed in step 4,

Run:

globus$ make gpt globus_gridftp_server

If you wish to have a log file of the build, use tee:

globus$ make gpt globus_gridftp_server 2>&1 | tee build.log

The syntax above assumes a Bourne shell. If you are using another shell, redirect stderr to stdout and then pipe it to tee.

1.3. Building only the GridFTP client

If you wish to install only the GridFTP client, refer to the Installing GT 4.0 section of the GT 4.0 System Administrator's Guide for prerequisites. Follow steps 1-3 as written. However, instead of running "make" as directed in step 4,

Run:

globus$ make globus-data-management-client

1 http://www.globus.org/toolkit/docs/4.0/admin/docbook/
2 http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html
3 http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html
4 http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html
If you wish to have a log file of the build, use `tee`:

```bash
globus$ make globus-data-management-client 2>&1 | tee build.log
```

The syntax above assumes a Bourne shell. If you are using another shell, redirect stderr to stdout and then pipe it to `tee`.

1.4. Building only the GridFTP SDK

If you wish to install only the GridFTP SDK, refer to the [Installing GT 4.0 section of the GT 4.0 System Administrator's Guide](http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html) for prerequisites. Follow steps 1-3 as written. However, instead of running "make" as directed in step 4, Run:

```bash
globus$ make globus-data-management-sdk
```

If you wish to have a log file of the build, use `tee`:

```bash
globus$ make globus-data-management-sdk 2>&1 | tee build.log
```

The syntax above assumes a Bourne shell. If you are using another shell, redirect stderr to stdout and then pipe it to `tee`.

1.5. Building a combination of GridFTP elements

If you wish to build a combination of GridFTP elements, refer to the [Installing GT 4.0 section of the GT 4.0 System Administrator's Guide](http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html) for prerequisites. Follow steps 1-3 as written. However, instead of running "make" as directed in step 4, Run:

```bash
globus$ make [any combination of the above commands, each separated by a space]
```

For example, if you just want to install the GridFTP server and client, the command would be:

```bash
globus$ make gpt globus_gridftp_server globus-data-management-client
```

If you wish to have a log file of the build, use `tee`:

```bash
globus$ make [any combination of the above commands, each separated by a space] 2>&1 | tee
```

The syntax above assumes a Bourne shell. If you are using another shell, redirect stderr to stdout and then pipe it to `tee`.

1.6. Building and Installing a static GridFTP server

If you wish to build and install a statically linked set of GridFTP binaries, refer to the [Installing GT 4.0 section of the GT 4.0 System Administrator's Guide](http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html) for prerequisites. Follow steps 1-2 as written. In step 3, however, you should

Run:

```bash
globus$ ...
```

5 http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html
6 http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html
7 http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html
globus$ export GLOBUS_LOCATION=/usr/local/globus-4.0.0
globus$./configure --prefix=$GLOBUS_LOCATION --with-buildopts="--static"

globus$ make gpt globus_gridftp_server

If you wish to have a log file of the build, use tee:

globus$ make gpt globus_gridftp_server 2>&1 | tee build.log

The syntax above assumes a Bourne shell. If you are using another shell, redirect stderr to stdout and then pipe it to tee.

2. Configuring

2.1. GridFTP server configuration overview

Note: Command line options and configuration file options may both be used, but the command line overrides the config file.

The configuration file for the GridFTP server is read from the following locations, in the given order. Only the first found will be loaded.

- Path specified with the -c <configfile> command line option.
- $GLOBUS_LOCATION/etc/gridftp.conf
- /etc/grid-security/gridftp.conf

Options are one per line, with the format:

<option> <value>

If the value contains spaces, they should be enclosed in double-quotes ("). Flags or boolean options should only have a value of 0 or 1. Blank lines and lines beginning with # are ignored.

For example:

 port 5000
 allow_anonymous 1
 anonymous_user bob
 banner "Welcome!"

2.2. GridFTP server configuration options

The table below lists config file options, associated command line options (if available) and descriptions. Note that any boolean option can be negated on the command line by preceding the specified option with '-no-' or '-n'. example: -no-cas or -nf.
Table 8.1. Informational Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>help <0</td>
<td>1></td>
</tr>
<tr>
<td>-h</td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>-help</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>longhelp <0</td>
<td>1></td>
</tr>
<tr>
<td>-hh</td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>-longhelp</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version <0</td>
<td>1></td>
</tr>
<tr>
<td>-v</td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>-version</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>versions <0</td>
<td>1></td>
</tr>
<tr>
<td>-V</td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>-versions</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.2. Modes of Operation

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inetd <0</td>
<td>1> -i -inetd</td>
</tr>
<tr>
<td></td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>daemon <0</td>
<td>1> -s -daemon</td>
</tr>
<tr>
<td></td>
<td>Default value: TRUE</td>
</tr>
<tr>
<td>detach <0</td>
<td>1> -S -detach</td>
</tr>
<tr>
<td></td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>exec <string> -exec <string></td>
<td>For statically compiled or non-GLOBUS_LOCATION standard binary locations, specify the full path of the server binary here. Only needed when run in daemon mode.</td>
</tr>
<tr>
<td></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>chdir <0</td>
<td>1> -chdir</td>
</tr>
<tr>
<td></td>
<td>Default value: TRUE</td>
</tr>
<tr>
<td>chdir_to <string> -chdir-to <string></td>
<td>Directory to chdir to after starting. Will use / if not set.</td>
</tr>
<tr>
<td></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>fork <0</td>
<td>1> -f -fork</td>
</tr>
<tr>
<td></td>
<td>Default value: TRUE</td>
</tr>
<tr>
<td>single <0</td>
<td>1> -l -single</td>
</tr>
<tr>
<td></td>
<td>Default value: FALSE</td>
</tr>
</tbody>
</table>
Table 8.3. Authentication, Authorization, and Security Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth_level <number></td>
<td>0 = Disables all authorization checks. 1 = Authorize identity only. 2 = Authorize all file/resource accesses. If not set, it uses level 2 for front ends and level 1 for data nodes.</td>
</tr>
<tr>
<td>-auth-level <number></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>allow_from <string></td>
<td>Only allow connections from these source ip addresses. Specify a comma separated list of ip address fragments. A match is any ip address that starts with the specified fragment. Example: '192.168.1.' will match and allow a connection from 192.168.1.45. Note that if this option is used any address not specifically allowed will be denied.</td>
</tr>
<tr>
<td>-allow-from <string></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>deny_from <string></td>
<td>Deny connections from these source ip addresses. Specify a comma separated list of ip address fragments. A match is any ip address that starts with the specified fragment. Example: '192.168.2.' will match and deny a connection from 192.168.2.45.</td>
</tr>
<tr>
<td>-deny-from <string></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>cas <0</td>
<td>1></td>
</tr>
<tr>
<td>-cas</td>
<td>Default value: TRUE</td>
</tr>
<tr>
<td>secure_ipc <0</td>
<td>1></td>
</tr>
<tr>
<td>-si</td>
<td>Default value: TRUE</td>
</tr>
<tr>
<td>ipc_auth_mode <string></td>
<td>Set GSI authorization mode for the ipc connection. Options are: none, host, self or subject:[subject].</td>
</tr>
<tr>
<td>-ia <string></td>
<td>Default value: host</td>
</tr>
<tr>
<td>-ipc-auth-mode <string></td>
<td></td>
</tr>
<tr>
<td>allow_anonymous <0</td>
<td>1></td>
</tr>
<tr>
<td>-aa</td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>-allow-anonymous</td>
<td></td>
</tr>
<tr>
<td>anonymous_names_allowed <string></td>
<td>Comma separated list of names to treat as anonymous users when allowing anonymous access. If not set the default names of 'anonymous' and 'ftp' will be allowed. Use '*' to allow any username.</td>
</tr>
<tr>
<td>-anonymous-names-allowed <string></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>anonymous_user <string></td>
<td>User to setuid to for an anonymous connection. Only applies when running as root.</td>
</tr>
<tr>
<td>-anonymous-user <string></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>anonymous_group <string></td>
<td>Group to setgid to for an anonymous connection. If not set the default group of anonymous_user will be used.</td>
</tr>
<tr>
<td>-anonymous-group <string></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>pw_file <string></td>
<td>Enable cleartext access and authenticate users against this /etc/passwd formatted file.</td>
</tr>
<tr>
<td>-password-file <string></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>connections_max <number></td>
<td>Maximum concurrent connections allowed. Only applies when running in daemon mode. Unlimited if not set. Default value: not set</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>-connections-max <number></td>
<td></td>
</tr>
<tr>
<td>connections_disabled <0</td>
<td>1></td>
</tr>
<tr>
<td>-connections-disabled</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.4. Logging Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log_level <string></td>
<td>Log level. A comma separated list of levels from: 'ERROR, WARN, INFO, DUMP, ALL'. Example: error,warn,info. You may also specify a numeric level of 1-255.</td>
</tr>
<tr>
<td>-d <string></td>
<td>Default value: ERROR</td>
</tr>
<tr>
<td>-log-level <string></td>
<td>Globus logging module that will be loaded. If not set the default 'stdio' module will be used, and the logfile options apply. Built-in modules are 'stdio' and 'syslog'. Log module options may be set by specifying module:opt1=val1:opt2=val2. Available options for the built-in modules are 'interval' and 'buffer', for buffer flush interval and buffer size, respectively. The default options are a 64k buffer size and a 5 second flush interval. A 0 second flush interval will disable periodic flushing, and the buffer will only flush when it is full. A value of 0 for buffer will disable buffering and all messages will be written immediately. Example: -log-module stdio:buffer=4096:interval=10.</td>
</tr>
<tr>
<td>log_module <string></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>-log-module <string></td>
<td>Path of a single file to log all activity to. If neither this option nor log_unique is set, logs will be written to stderr unless the execution mode is detached or inetd, in which case logging will be disabled. Default value: not set.</td>
</tr>
<tr>
<td>log_single <string></td>
<td>Partial path to which 'gridftp.(pid).log' will be appended to construct the log filename. Example: -L /var/log will create a separate log (/var/log/gridftp/gridftp.xxxx.log) for each process (which is normally each new client) which case logging will be disabled. Default value: not set.</td>
</tr>
<tr>
<td>-l <string></td>
<td></td>
</tr>
</tbody>
</table>
Log netlogger style info for each transfer into this file.

Default value: not set

ex: DATE=20050520163008.306532 HOST=localhost PROG=globus-gridftp-server NL.EVNT=FTP_INFO
START=20050520163008.305913 USER=ftp FILE=/etc/group BUFFER=0 BLOCK=262144 NBYTES=54
STREAMS=1 STRIPES=1 DEST=[127.0.0.1] TYPE=RETR CODE=226

Time format is YYYYMMDDHHMMSS.UUUUUU (microsecs).

DATE: time the transfer completed.

START: time the transfer started.

HOST: hostname of the server.

USER: username on the host that transferred the file.

BUFFER: tcp buffer size (if 0 system defaults were used).

BLOCK: the size of the data block read from the disk and posted to the network.

NBYTES: the total number of bytes transferred.

VOLUME: the disk partition where the transfer file is stored.

STREAMS: the number of parallel TCP streams used in the transfer.

STRIPES: the number of stripes used on this end of the transfer.

DEST: the destination host.

TYPE: the transfer type, RETR is a send and STOR is a receive (ftp 959 commands).

CODE: the FTP rfc959 completion code of the transfer. 226 indicates success, 5xx or 4xx are failure codes.

File access permissions of log files. Should be an octal number such as 0644 (the leading 0 is required).

Default value: not set

Disables transmission of per-transfer usage statistics. See the Usage Statistics section in the online documentation for more information.

Default value: FALSE

Comma separated list of contact strings for usage statistics listeners. The format of <string> is host:port.

Default value: usage-stats.globus.org:4810

Example:

In this example, the usage statistics will be transmitted to the default Globus target (usage-stats.globus.org) and another target (usage-stats.uc.teragrid.org).
Table 8.5. Single and Striped Remote Data Node Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote_nodes <string></td>
<td>Comma separated list of remote node contact strings.</td>
</tr>
<tr>
<td>-r <string></td>
<td>Default value: not set</td>
</tr>
<tr>
<td>-remote-nodes <string></td>
<td></td>
</tr>
<tr>
<td>data_node <0</td>
<td>1></td>
</tr>
<tr>
<td>-dn</td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>-data-node</td>
<td></td>
</tr>
<tr>
<td>stripe_blocksize <number></td>
<td>Size in bytes of sequential data that each stripe will transfer.</td>
</tr>
<tr>
<td>-sbs <number></td>
<td>Default value: 1048576</td>
</tr>
<tr>
<td>-stripe-blocksize <number></td>
<td></td>
</tr>
<tr>
<td>stripe_layout <number></td>
<td>Stripe layout. 1 = Partitioned, 2 = Blocked.</td>
</tr>
<tr>
<td>-sl <number></td>
<td>Default value: 2</td>
</tr>
<tr>
<td>-stripe-layout <number></td>
<td></td>
</tr>
<tr>
<td>stripe_blocksize_locked <0</td>
<td>1></td>
</tr>
<tr>
<td>-stripe-blocksize-locked</td>
<td>Default value: FALSE</td>
</tr>
<tr>
<td>stripe_layout_locked <0</td>
<td>1></td>
</tr>
<tr>
<td>-stripe-layout-locked</td>
<td>Default value: FALSE</td>
</tr>
</tbody>
</table>

Table 8.6. Disk Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blocksize <number></td>
<td>Size in bytes of data blocks to read from disk before posting to the network.</td>
</tr>
<tr>
<td>-bs <number></td>
<td>Default value: 262144</td>
</tr>
<tr>
<td>-blocksize <number></td>
<td></td>
</tr>
<tr>
<td>sync_writes <0</td>
<td>1></td>
</tr>
<tr>
<td>-sync-writes</td>
<td>Default value: FALSE</td>
</tr>
</tbody>
</table>
Table 8.7. Network Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>port <number></td>
<td>Port on which a front end will listen for client control channel connections or on which a data node will listen for connections from a front end. If not set a random port will be chosen and printed via the logging mechanism.</td>
<td>not set</td>
</tr>
<tr>
<td>-p <number></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-port <number></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control_interface <string></td>
<td>Hostname or IP address of the interface to listen for control connections on. If not set will listen on all interfaces.</td>
<td>not set</td>
</tr>
<tr>
<td>-control-interface <string></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data_interface <string></td>
<td>Hostname or IP address of the interface to use for data connections. If not set will use the current control interface.</td>
<td>not set</td>
</tr>
<tr>
<td>-data-interface <string></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipc_interface <string></td>
<td>Hostname or IP address of the interface to use for ipc connections. If not set will listen on all interfaces.</td>
<td>not set</td>
</tr>
<tr>
<td>-ipc-interface <string></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hostname <string></td>
<td>Effectively sets the above control_interface, data_interface and ipc_interface options.</td>
<td>not set</td>
</tr>
<tr>
<td>-hostname <string></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipc_port <number></td>
<td>Port on which the front end will listen for data node connections.</td>
<td>not set</td>
</tr>
<tr>
<td>-ipc-port <number></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8.8. Timeouts

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>control_preauth_timeout <number></td>
<td>Time in seconds to allow a client to remain connected to the control channel without activity before authenticating.</td>
<td>120</td>
</tr>
<tr>
<td>-control-preauth-timeout <number></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control_idle_timeout <number></td>
<td>Time in seconds to allow a client to remain connected to the control channel without activity.</td>
<td>600</td>
</tr>
<tr>
<td>-control-idle-timeout <number></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipc_idle_timeout <number></td>
<td>Idle time in seconds before an unused ipc connection will close.</td>
<td>600</td>
</tr>
<tr>
<td>-ipc-idle-timeout <number></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipc_connect_timeout <number></td>
<td>Time in seconds before cancelling an attempted ipc connection.</td>
<td>60</td>
</tr>
<tr>
<td>-ipc-connect-timeout <number></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8.9. User Messages

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>banner <string></code></td>
<td>Message to display to the client before authentication. Default value: not set</td>
</tr>
<tr>
<td><code>-banner <string></code></td>
<td></td>
</tr>
<tr>
<td><code>banner_file <string></code></td>
<td>File to read banner message from. Default value: not set</td>
</tr>
<tr>
<td><code>-banner-file <string></code></td>
<td></td>
</tr>
<tr>
<td>`banner_terse <0</td>
<td>1>`</td>
</tr>
<tr>
<td><code>-banner-terse</code></td>
<td></td>
</tr>
<tr>
<td><code>login_msg <string></code></td>
<td>Message to display to the client after authentication. Default value: not set</td>
</tr>
<tr>
<td><code>-login-msg <string></code></td>
<td></td>
</tr>
<tr>
<td><code>login_msg_file <string></code></td>
<td>File to read login message from. Default value: not set</td>
</tr>
<tr>
<td><code>-login-msg-file <string></code></td>
<td></td>
</tr>
</tbody>
</table>

Table 8.10. Module Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>load_dsi_module <string></code></td>
<td>Data Storage Interface module to load. File and remote modules are defined by the server. If not set the file module is loaded, unless the 'remote' option is specified, in which case the remote module is loaded. An additional configuration string can be passed to the DSI using the format [module name]:[configuration string]. The format of the configuration string is defined by the DSI being loaded. Default value: not set</td>
</tr>
<tr>
<td><code>-dsi <string></code></td>
<td></td>
</tr>
<tr>
<td><code>allowed_modules <string></code></td>
<td>Comma separated list of ERET/ESTO modules to allow and, optionally, specify an alias for. Example: module1,alias2:module2,module3 (module2 will be loaded when a client asks for alias2). Default value: not set</td>
</tr>
<tr>
<td><code>-allowed-modules <string></code></td>
<td></td>
</tr>
</tbody>
</table>

Table 8.11. Other

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configfile <string></code></td>
<td>Path to configuration file that should be loaded. Otherwise will attempt to load $GLOBUS_LOCATION/etc/gridftp.conf and /etc/grid-security/gridftp.conf. Default value: not set</td>
</tr>
<tr>
<td><code>-c <string></code></td>
<td></td>
</tr>
<tr>
<td>`use_home_dirs <0</td>
<td>1>`</td>
</tr>
<tr>
<td><code>-use-home-dirs</code></td>
<td></td>
</tr>
<tr>
<td>`debug <0</td>
<td>1>`</td>
</tr>
<tr>
<td><code>-debug</code></td>
<td></td>
</tr>
</tbody>
</table>
2.3. Configuring the GridFTP server to run under xinetd/inetd

Note: The service name used (gsiftp in this case) should be defined in /etc/services with the desired port.

Here is a sample gridftp server xinetd config entry:

```plaintext
service gsiftp
{
    instances = 100
    socket_type = stream
    wait = no
    user = root
    env += GLOBUS_LOCATION=(globus_location)
    env += LD_LIBRARY_PATH=(globus_location)/lib
    server = (globus_location)/sbin/globus-gridftp-server
    server_args = -i
    log_on_success += DURATION
    nice = 10
    disable = no
}
```

Here is a sample gridftp server inetd config entry (read as a single line):

```plaintext
gsiftp stream tcp nowait root /usr/bin/env env GLOBUS_LOCATION=(globus_location) LD_LIBRARY_PATH=(globus_location)/lib (globus_location)/sbin/globus-gridftp-server -i
```

Note

On Mac OS X, you must set DYLD_LIBRARY_PATH instead of LD_LIBRARY_PATH in the above examples. On IRIX, you may need to set either LD_LIBRARYN32_PATH or LD_LIBRARY64_PATH. However, on OS X you could also use launchd, as shown below.

Here is a sample Mac OS X launchd config entry. Create a `/Library/LaunchDaemons/gsiftp.plist` file. An example is below. Edit it to have the right paths for your installation. Then run "sudo launchctl load /Library/LaunchDaemons/gsiftp.plist".

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/.plist.dtd">
<plist version="1.0">
    <dict>
        <key>Debug</key>
        <true/>
        <key>EnvironmentVariables</key>
        <dict>
            <key>DYLD_LIBRARY_PATH</key>
            <string>/usr/local/gt4/lib</string>
            <key>GLOBUS_LOCATION</key>
            <string>/usr/local/gt4</string>
        </dict>
    </dict>
</plist>
```
2.4. Configuring GridFTP to run with the Community Authorization Service (CAS)

The Community Authorization Service (CAS)\(^9\) is used to administer access rights to files and directories and the GridFTP server can be configured to enforce those rights.

For more information, see How to Set Up CAS to Use with GridFTP\(^{10}\).

\(^9\) http://www.globus.org/toolkit/docs/4.0/security/cas/

\(^{10}\) http://www.globus.org/toolkit/docs/4.0/security/cas/WS_AA_CAS_HOWTO_Setup_GridFTP.html
3. Deploying the GridFTP Server: globus-gridftp-server

It is assumed that the toolkit installation was successful and that Globus security is properly configured. For more information, see the Installation Guide[11].

3.1. Running in daemon mode

The server should generally be run as root in daemon mode, though it is possible to run it as a user (see below). When run as root you will need to have a host certificate.

Run the server:

globus-gridftp-server < -s | -S > <args>

where:

- s Runs in the foreground (this is the default mode).
- S Detaches from the terminal and runs in the background.

The following additional steps may be required when running as a user other than root:

- Create a ~/.gridmap file, containing the DNs of any clients you wish to allow, mapped to the current username.
- Create a proxy with grid-proxy-init.

3.2. Running under inetd or xinetd

The -i command line option enables the server to be run under inetd or xinetd.

See Configuring GridFTP for example inetd and inetd configuration entries.

3.3. Remote data-nodes and striped operation

The GridFTP server now supports separate front end (client control connection) and back end (data node) processes. In addition, a single front end process may connect to multiple back end data nodes.

When multiple back end data nodes are available, the server is said to be in a striped configuration, or simply, is a striped server. In this mode transfers are divided over all available data nodes, thus allowing the combined bandwidth of all data nodes to be used.

Note: The connection between the front end and data nodes is referred to as the *ipc channel*.

The ability to use inetd or daemon execution modes applies to both front end servers and data nodes, and the same certificate and user requirements apply.

To start the front end:

globus-gridftp-server <args> -r <host:port>[,<host:port>,...]

To start the data-node:

globus-gridftp-server -p <port> -dn

The -p <port> option used on the data-node is the port that will be used for ipc connections. This is the port that you will register with the front end server.

For example:

machineB> globus-gridftp-server -p 6000 -dn
machineC> globus-gridftp-server -p 7000 -dn
machineA> globus-gridftp-server -p 5000 -r machineB:6000,machineC:7000

The client would only connect to the front end at machineA:5000, for example, using globus-url-copy with the -stripe option:

globus-url-copy -stripe gsiftp://machineA:5000/file file:///destination

or

Where machineX may be another striped server or a standard GridFTP server.

3.4. Separation of Processes

As is illustrated above, the GridFTP server can be separated into front end and data node processes. This is the architecture used to achieve a striped server, but it can also be exploited to achieve a higher level of security.

Running the server as root is often desirable because it allows the server to fork and setuid on a child processes related to an authenticated user. This allows the server to leverage the operating systems file system permissions and other security devices. However, it is not at all desirable to have a root running process listening on a port open to the world. If an attacker were to compromise the process they could obtain root level access to the machine.

To overcome this security risk the gridftp server can be run in a front end/back end manner. The front end can be run as any user, say user globus, that has very limited access to the machine. The front end is the processes open to the outside world. If it is compromised an attacker has only gained access to that limited account. The back end is run as root, but configured to only allow connections from the front end.

To start the front end:

globus-gridftp-server -p 7000 -r localhost:7001

and the back end:

globus-gridftp-server -p 7001 -dn -allow-from 127.0.0.1

4. Testing

If the globus-ftp-client-test package has been installed, our standard test suite may be run to verify functionality on your platform. Simply set up the globus environment, chdir to $GLOBUS_LOCATION/test/globus_ftp_client_test/ and run ./TESTS.pl.

5. Security Considerations

The following are points to consider relative to security:
5.1. Two ways to configure your server

We now provide two ways to configuring your server:

- The classic installation. This is equivalent to any FTP server you would normally install. It is run as a root setuid process. Once the user is authenticated, the process does a setuid to the appropriate non-privileged user account.

- A new split process installation. In this configuration, the server consists of two processes:
 - The control channel (the process the external user connects to) runs as a non-privileged user (typically the globus user).
 - The data channel (the process that access the file system and moves the data) runs as a root setuid program as before but is only connected to the control channel process from a local machine. This means an external user is never connected to a root running process and thus minimizes the impact of an exploit. This does, however, require that a copy of the host cert and host key be owned by the non-privileged user. If you use this configuration, the non-privileged user should not have write permission to executables, configuration files, etc.

5.2. New authentication options

There are new authentication options available for the server in GT4.0.0:

- Anonymous: The server now supports anonymous access. In order for this to work, a configuration switch must explicitly enable it, a list of acceptable usernames must be defined, and an account under which the anonymous user should run must be defined. If the necessary configurations are in place, and the client presents a username that is in the list of acceptable anonymous users, then the session will be accepted and the process will setuid to the anonymous user account. We do not support chroot in this version of the server.

- Username / Password: This is standard FTP authentication. It uses a separate password file, used only by the GridFTP server, *NOT* the system password file.

⚠️ Warning

WE HIGHLY RECOMMEND YOU NOT USE THIS. YOU WILL BE SENDING YOUR PASSWORD IN CLEAR TEXT OVER THE NETWORK.

We do, however, have some user communities who run only on internal networks for testing purposes and who do not wish to deal with obtaining GSI credentials. If you are considering this, we would recommend that you look at Simple CA and set up your own testbed CA. This can be done in less than an hour and then provides you full GSI security.

5.3. Firewall requirements

If the GridFTP server is behind a firewall:

1. Contact your network administrator to open up port 2811 (for GridFTP control channel connection) and a range of ports (for GridFTP data channel connections) for the incoming connections. If the firewall blocks the outgoing connections, open up a range of ports for outgoing connections as well.

2. Set the environment variable GLOBUS_TCP_PORT_RANGE:

 export GLOBUS_TCP_PORT_RANGE=min,max
where \(\text{min, max} \) specify the port range that you have opened for the incoming connections on the firewall. This restricts the listening ports of the GridFTP server to this range. Recommended range is 1000 (e.g., 50000-51000) but it really depends on how much use you expect.

3. If you have a firewall blocking the outgoing connections and you have opened a range of ports, set the environment variable `GLOBUS_TCP_SOURCE_RANGE`:

   ```bash
   export GLOBUS_TCP_SOURCE_RANGE=min,max
   ```

 where \(\text{min, max} \) specify the port range that you have opened for the outgoing connections on the firewall. This restricts the outbound ports of the GridFTP server to this range. Recommended range is twice the range used for `GLOBUS_TCP_PORT_RANGE`, because if parallel TCP streams are used for transfers, the listening port would remain the same for each connection but the connecting port would be different for each connection.

Note

If the server is behind NAT, the `--data-interface <real ip/hostname>` option needs to be used on the server.

If the GridFTP client is behind a firewall:

1. Contact your network administrator to open up a range of ports (for GridFTP data channel connections) for the incoming connections. If the firewall blocks the outgoing connections, open up a range of ports for outgoing connections as well.

2. Set the environment variable `GLOBUS_TCP_PORT_RANGE`:

   ```bash
   export GLOBUS_TCP_PORT_RANGE=min,max
   ```

 where \(\text{min, max} \) specify the port range that you have opened for the incoming connections on the firewall. This restricts the listening ports of the GridFTP client to this range. Recommended range is 1000 (e.g., 50000-51000) but it really depends on how much use you expect.

3. If you have a firewall blocking the outgoing connections and you have opened a range of ports, set the environment variable `GLOBUS_TCP_SOURCE_RANGE`:

   ```bash
   export GLOBUS_TCP_PORT_RANGE=min,max
   ```

 where \(\text{min, max} \) specify the port range that you have opened for the outgoing connections on the firewall. This restricts the outbound ports of the GridFTP client to this range. Recommended range is twice the range used for `GLOBUS_TCP_PORT_RANGE`, because if parallel TCP streams are used for transfers, the listening port would remain the same for each connection but the connecting port would be different for each connection.

Additional information on Globus Toolkit Firewall Requirements is available [here]({#12}).

6. Troubleshooting

If you are having problems using the GridFTP server, try the steps listed below. If you have an error, try checking the server logs if you have access to them. By default, the server logs to stderr, unless it is running from inetd, or its execution mode is detached, in which case logging is disabled by default.

The command line options -d, -log-level, -L and -logdir can affect where logs will be written, as can the configuration file options log_single and log_unique. See the Configuration information for more information on these and other configuration options.

6.1. Establish control channel connection

Verify that you can establish a control channel connection and that the server has started successfully by telnetting to the port on which the server is running:

% telnet localhost 2811
 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is "^]".
 220 GridFTP Server mldev.mcs.anl.gov 2.0 (gcc32dbg, 1113865414-1) ready.

If you see anything other than a 220 banner such as the one above, the server has not started correctly.

Verify that there are no configuration files being unexpectedly loaded from /etc/grid-security/gridftp.conf or $GLOBUS_LOCATION/etc/gridftp.conf. If those files exist, and you did not intend for them to be used, rename them to .save, or specify -c none on the command line and try again.

If you can log into the machine where the server is, try running the server from the command line with only the -s option:

$GLOBUS_LOCATION/sbin/globus-gridftp-server -s

The server will print the port it is listening on:

Server listening at gridftp.mcs.anl.gov:57764

Now try and telnet to that port. If you still do not get the banner listed above, something is preventing the socket connection. Check firewalls, tcp-wrapper, etc.

If you now get a correct banner, add -p 2811 (you will have to disable (x)inetd on port 2811 if you are using them or you will get port already in use):

$GLOBUS_LOCATION/sbin/globus-gridftp-server -s -p 2811

Now telnet to port 2811. If this does not work, something is blocking port 2811. Check firewalls, tcp-wrapper, etc.

If this works correctly then re-enable your normal server, but remove all options but -i, -s, or -S.

Now telnet to port 2811. If this does not work, something is wrong with your service configuration. Check /etc/services and (x)inetd config, have (x)inetd restarted, etc.

If this works, begin adding options back one at a time, verifying that you can telnet to the server after each option is added. Continue this till you find the problem or get all the options you want.

At this point, you can establish a control connection. Now try running globus-url-copy.

6.2. Try running globus-url-copy

Once you've verified that you can establish a control connection, try to make a transfer using globus-url-copy.

If you are doing a client/server transfer (one of your URLs has file: in it) then try:

globus-url-copy -vb -dbg gsiftp://host.server,running.on/dev/zero file:///dev/null
This will run until you control-c the transfer. If that works, reverse the direction:

globus-url-copy -vb -dbg file:///dev/zero gsiftp://host.server.running.on/dev/null

Again, this will run until you control-c the transfer.

If you are doing a third party transfer, run this command:

globus-url-copy -vb -dbg gsiftp://host.server1.on/dev/zero gsiftp://host.server2.on/dev/null

Again, this will run until you control-c the transfer.

If the above transfers work, try your transfer again. If it fails, you likely have some sort of file permissions problem, typo in a file name, etc.

6.3. If your server starts...

If the server has started correctly, and your problem is with a security failure or gridmap lookup failure, verify that you have security configured properly here.

If the server is running and your client successfully authenticates but has a problem at some other time during the session, please ask for help on gt-user@globus.org. When you send mail or submit bugs, please always include as much of the following information as possible:

- Specs on all hosts involved (OS, processor, RAM, etc).
- globus-url-copy -version
- globus-url-copy -versions
- Output from the telnet test above.
- The actual command line you ran with -dbg added. Don't worry if the output gets long.
- Check that you are getting a FQDN and /etc/hosts that is sane.
- The server configuration and setup (/etc/services entries, (x)inetd configs, etc.).
- Any relevant lines from the server logs (not the entire log please).

7. Usage statistics collection by the Globus Alliance

The following GridFTP-specific usage statistics are sent in a UDP packet at the end of each transfer, in addition to the standard header information described in the Usage Stats section.

- Start time of the transfer
- End time of the transfer
- Version string of the server

13 http://dev.globus.org/wiki/Mailing_Lists
14 http://www.globus.org/toolkit/docs/4.0/Usage_Stats.html
• TCP buffer size used for the transfer
• Block size used for the transfer
• Total number of bytes transferred
• Number of parallel streams used for the transfer
• Number of stripes used for the transfer
• Type of transfer (STOR, RETR, LIST)
• FTP response code -- Success or failure of the transfer

Note

The client (globus-url-copy) does NOT send any data. It is the servers that send the usage statistics.

We have made a concerted effort to collect only data that is not too intrusive or private and yet still provides us with information that will help improve and gauge the usage of the GridFTP server. Nevertheless, if you wish to disable this feature for GridFTP only, see the Logging section of Section 2.2, “GridFTP server configuration options”. Note that you can disable transmission of usage statistics globally for all C components by setting “GLOBUS_USAGE_OUTPUT=1” in your environment.

Also, please see our policy statement15 on the collection of usage statistics.

15 http://www.globus.org/toolkit/docs/4.0/Usage_Stats.html
Chapter 9. Java WS Core Admin Guide

1. Building and Installing

Java WS Core is built and installed as part of a default GT 4.0 installation. For basic installation instructions, see the GT 4.0 System Administrator's Guide. No extra installation steps are required for this component.

The following are optional instructions for more advanced types of installations. These are for those advanced users who want to build the latest code from CVS or are just interested in the Java WS Core.

1.1. Building from source

1. Obtain the source code for Java WS Core:

 From CVS.
 a. To get the latest source from cvs execute:

      ```
      cvs -d :pserver:anonymous@cvs.globus.org:/home/globdev/CVS/globus-packages \
      checkout wsrf
      ```

 b. Change into the `wsrf` directory.

      ```
      cd wsrf
      ```

 From Core-only source distribution.
 a. Untar or unzip the distribution archive.

      ```
      tar xvfz ws-core-XXX-src.tar.gz
      ```

 b. Change into the unpacked distribution directory.

      ```
      cd ws-core-XXX
      ```

2. Set the `GLOBUS_LOCATION` environment variable to the absolute path of the target directory of your installation. On Windows:

   ```
   set GLOBUS_LOCATION=c:\gt4
   ```

 On Unix/Linux:

   ```
   setenv GLOBUS_LOCATION /soft/gt4/
   ```

 or

   ```
   export GLOBUS_LOCATION=/soft/gt4/
   ```

 If `GLOBUS_LOCATION` is not set, an install directory will be created under the current directory.
3. Run:

```
ant all
```

Additional arguments can be specified on the `ant` command line to customize the build:

- `--windowsOnly=false` - generate launch scripts for standard Globus tools such as `grid-proxy-init`, etc. (Unix/Linux only)
- `--all.scripts=true` - generate Windows and Unix launch scripts
- `--enable.container.desc=true` - create and configure the container with a global security descriptor

1.2. Installing Core-only binary distribution

1. Untar or unzip the distribution archive.

```
tar xvfz ws-core-XXX-bin.tar.gz
```

2. Change into the unpacked distribution directory.

```
cd ws-core-XXX
```

3. Set the `GLOBUS_LOCATION` environment variable to the unpacked distribution directory. On Windows:

```
set GLOBUS_LOCATION=c:\gt4
```

On Unix/Linux:

```
setenv GLOBUS_LOCATION /soft/gt4/
```

or

```
export GLOBUS_LOCATION=/soft/gt4/
```

Note: Please make sure to have the [JAAS](http://java.sun.com/products/jaas/index-10.html) library installed if running with J2SE 1.3.1.

2. Configuring

2.1. Configuration overview

Java WS Core provides per-`gar` configuration and supports configuration profiles. The configuration information of a service is mainly encapsulated in two separate configuration files:

- `server-config.wsdd` (*Web Service Deployment Descriptor*) - contains information about the web service.
- `jndi-config.xml` (*JNDI configuration file*) - contains information about the resource management.

A service that support security might also have the `security-config.xml` (security deployment descriptor) file. Please see the [Security Descriptor](http://www.globus.org/toolkit/docs/4.0/security/authzframe/security_descriptor.html) page in the GT4 WS Authorization Framework documentation for details.
All these configuration files are dropped into the `$GLOBUS_LOCATION/etc/<gar.id>/` directory during the deployment process.

2.2. Syntax of the interface:

2.2.1. Global Configuration

The global properties are specified in the `<globalConfiguration>` section of `*server-config.wsdd` files in the `$GLOBUS_LOCATION/etc/globus_wsrf_core/` directory. The configuration item `name` corresponds to the "name" attribute in a `<parameter>` sub element, and the `value` is put as a "value" attribute within the same parameter element.

Table 9.1. General configuration parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>logicalHost</td>
<td><code><hostname></code></td>
<td>This parameter specifies the hostname to use instead of the default local host. It is equivalent to setting the <code>GLOBUS_HOSTNAME</code> environment property. Can be FQDN or just hostname.</td>
<td>Optional</td>
</tr>
<tr>
<td>disableDNS</td>
<td><code><boolean></code></td>
<td>This parameter specifies whether to perform DNS lookup on the logicalHost parameter. By default "false" is assumed (DNS lookup is performed).</td>
<td>Optional</td>
</tr>
<tr>
<td>domainName</td>
<td><code><domain name></code></td>
<td>This parameter specifies the domain name to append to the host name if the host name is not qualified by a domain.</td>
<td>Optional</td>
</tr>
<tr>
<td>publishHostName</td>
<td><code><boolean></code></td>
<td>This parameter specifies whether to publish the hostname or the ip address. It is only used when DNS lookups are enabled (disableDNS is false).</td>
<td>Optional</td>
</tr>
<tr>
<td>server.id</td>
<td><code><string></code></td>
<td>This parameter specifies the server id. The server id is used to uniquely identify each container instance. For example, each container gets its own persistent directory based on the server id. By default, the standalone container server id is "<ip>-<containerPort>". In Tomcat, the server id will default to "<ip>-<webApplicationName>".</td>
<td>Optional (since GT 4.0.1)</td>
</tr>
</tbody>
</table>
Table 9.2. Standalone/embedded container-specific configuration parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>containerThreads</code></td>
<td><code><int></code></td>
<td>This parameter controls the initial thread pool size for the container. If not set, it defaults to 2. In GT 4.0.3+ it defaults to 1.</td>
<td>Optional</td>
</tr>
<tr>
<td><code>containerThreads-Max</code></td>
<td><code><int></code></td>
<td>This parameter sets the maximum number of threads for the container. By default it is set to 4 * the <code>containerThreads</code> setting.</td>
<td>Optional</td>
</tr>
<tr>
<td><code>containerThreadsHighWaterMark</code></td>
<td><code><int></code></td>
<td>This parameter controls when the thread pool of the container should start shrinking (if the number of idle threads exceeds this number). By default it is set to 2 * the <code>containerThreads</code> setting.</td>
<td>Optional</td>
</tr>
<tr>
<td><code>containerTimeout</code></td>
<td><code><int></code></td>
<td>This parameter controls the container timeout. That is, the maximum amount of time the container will wait to receive a message from the client. By default it is set to 3 minutes.</td>
<td>Optional (since GT 4.0.2)</td>
</tr>
<tr>
<td><code>webContext</code></td>
<td><code><name></code></td>
<td>This parameter specifies the context name under which the services are published under: http://<host>:<port>/<webContext>/services/MyService. By default "wsrf" name is used. In Tomcat, this parameter is always set to the web application's name.</td>
<td>Optional (since GT 4.0.1)</td>
</tr>
</tbody>
</table>

Table 9.3. Default container thread pool settings

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. threads</th>
<th>Max. threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>standalone</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>embedded</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 9.4. Default container thread pool settings (GT 4.0.3+ only)

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. threads</th>
<th>Max. threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>standalone</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>embedded</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

2.2.2. Service Configuration

2.2.2.1. WSDD

An example of a deployment descriptor for a CounterService:

```xml
<service name="CounterService" provider="Handler"
    use="literal" style="document">
    <parameter name="className"
        value="org.globus.wsrf.samples.counter.CounterService"/>
    <parameter name="handlerClass"
        value="org.globus.axis.providers.RPCProvider"/>
    <parameter name="scope"
        value="Application"/>
```
Services are defined in a <service> element. The "name" attribute of the <service> element defines the remotely accessible name of the service. The service handle will have the form of <hosting environment URL>/foo, where:

- the hosting environment URL typically is http://<host>:<port>/wsrf/services.
- foo is the name of the service (<service name="foo" ...>.

The use attribute should be set to literal and the style attribute to document for all WSRF/WSN based services. The configuration information for a service is defined by various <parameter> sub-elements within a <service> element. The configuration item name corresponds to the "name" attribute in a <parameter> sub element, and the value is put as a "value" attribute within the same parameter element.

Table 9.5. Axis Standard Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>className</td>
<td><class></td>
<td>This parameter specifies a class that implements the web service methods.</td>
<td>Required</td>
</tr>
<tr>
<td>handler-Class</td>
<td><class></td>
<td>This parameter specifies what dispatcher to use to send a request to a service method. This parameter is required if the provider attribute of the service is set to Provider. The default dispatcher we provide is called org.globus.axis.providers.RPCProvider. It enables special features such as operation providers or security support.</td>
<td>Recommended in our environment</td>
</tr>
<tr>
<td>scope</td>
<td><value></td>
<td>Scope value can be one of: Request (the default), Application, or Session. If Request scope is used, a new service object is created for each SOAP request that comes in for the service. If Application scope is used, only a single instance of the service object is created and used for all SOAP requests that come in for the service. If Session scope is used, a new service object is created for each session-enabled client who accesses the service. Note: Only Request and Application scopes are supported when used with org.globus.axis.providers.RPCProvider handlerClass.</td>
<td>Application scope is recommended</td>
</tr>
<tr>
<td>wsdlFile</td>
<td><path></td>
<td>This parameter points to a wsdl file for the service. The wsdl file must contain the wsdl:service entry. The file location can be relative or absolute. A relative file location is recommended.</td>
<td>Required in our environment</td>
</tr>
<tr>
<td>allowed-Methods</td>
<td><list of methods></td>
<td>This parameter specifies a space or comma separated list of method names that can be called via SOAP. "*" indicates that all methods of the service class can be invoked via SOAP.</td>
<td>Optional. By default all methods are allowed.</td>
</tr>
</tbody>
</table>
Table 9.6. Java WS Core Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>loadOnStartup</code></td>
<td><boolean></td>
<td>If set to <code>true</code> this parameter will cause the web service and the corresponding ResourceHome (if any) to be initialized (with proper security settings if configured) at container startup. This is useful for restarting some tasks, etc. at container startup without having to call the service. Please check the Lifecycle and activation(^4) section for details.</td>
<td>Optional</td>
</tr>
<tr>
<td><code>allowedMethodsClass</code></td>
<td><class></td>
<td>This parameter is similar to the <code>allowedMethods</code> standard Axis property but it specifies a Java class or an interface that is introspected to come up with a list of allowed methods that can be called remotely on the service. It is useful for easily restricting the SOAP-accessible methods of the service. Usually the class specified in this parameter would be the remote interface class generated for the service. This parameter only has effect if used with <code>org.globus.axis.providers.RPCProvider</code> handlerClass.</td>
<td>Optional</td>
</tr>
<tr>
<td><code>providers</code></td>
<td><list of providers></td>
<td>This parameter specifies a space separated list of provider names or class names. Please see operation provider support(^5) section for details. This parameter only has effect if used with <code>org.globus.axis.providers.RPCProvider</code> handlerClass.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Please see Custom Deployment\(^6\) for details on Axis Web Services Deployment Descriptor.

2.2.2.2. JNDI

An example of a JNDI configuration bit for a CounterService:

```xml
<service name="CounterService">
  <resource name="home"
    type="org.globus.wsrf.samples.counter.CounterHome">
    <resourceParams>
      <parameter>
        <name>factory</name>
        <value>org.globus.wsrf.jndi.BeanFactory</value>
      </parameter>
      <parameter>
        <name>resourceClass</name>
        <value>org.globus.wsrf.samples.counter.PersistentCounter</value>
      </parameter>
      <parameter>
        <name>resourceKeyName</name>
        <value>{http://counter.com}CounterKey</value>
      </parameter>
      <parameter>
        <name>resourceKeyType</name>
        <value>java.lang.Integer</value>
      </parameter>
    </resourceParams>
  </resource>
</service>
```

\(^4\) http://ws.apache.org/axis/java/user-guide.html#PublishingServicesWithAxis
\(^5\) http://www.globus.org/toolkit/docs/4.0/common/javawscore/developer-index.html#s-javawscore-developer-OperationProvider
\(^6\) http://ws.apache.org/axis/java/user-guide.html#PublishingServicesWithAxis
Each service in WSDD should have a matching entry in the JNDI configuration file with the same name. Under each service entry in JNDI different resource objects or entries might be defined. Please see the JNDI section\(^7\) for details. Each service entry in JNDI should have a resource defined called "home". That resource is the ResourceHome implementation for the service (as specified by the type attribute). Depending on the ResourceHome implementation different options can be configured for the ResourceHome. Currently we have two main base ResourceHome implementations: org.globus.wsrfs.impl.ResourceHomeImpl and org.globus.wsrfs.impl.ServiceResourceHome.

Note: All "home" resources must specify a factory parameter with org.globus.wsrfs.jndi.BeanFactory value.

2.2.2.2.1. ResourceHomeImpl

The ResourceHomeImpl is a generic and reusable ResourceHome implementation. It supports persistent resources, resource caching, resource sweeper, etc.

Table 9.7. ResourceHomeImpl parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>resourceKey-Name</td>
<td><qname></td>
<td>This parameter specifies a QName of the resource key. The namespace is specified in the { }. For example, this QName will be used to discover the SOAP header that contains the key of the resource in the request.</td>
<td>Required</td>
</tr>
<tr>
<td>resourceKeyType</td>
<td><class></td>
<td>This parameter specifies the type of the resource key as a Java class. The key XML element is deserialized into this Java type. The Java type can be for any simple Java type, Axis generated bean, or a class with a type mapping.</td>
<td>Optional. Defaults to java.lang.String</td>
</tr>
<tr>
<td>resourceClass</td>
<td><class></td>
<td>This parameter specifies the class name of the resource object. This is used to ensure that right type of resource object is added to resource home and to instantiate the right object if the resource supports persistence.</td>
<td>Required</td>
</tr>
<tr>
<td>sweeperDelay</td>
<td><long></td>
<td>This parameter specifies how often the resource sweeper runs in milliseconds.</td>
<td>Optional. Defaults to 1 minute</td>
</tr>
<tr>
<td>cacheLocation</td>
<td><jndi path></td>
<td>This parameter specifies the JNDI location of the resource cache for this resource home. Please see Configuring Resource Cache below for details.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

2.2.2.2.1.1. Configuring Resource Cache

If ResourceHomeImpl is configured with resource class that implements the PersistenceCallback interface it will store the resource objects wrapped in Java SoftReference\(^8\). That allows the JVM to automatically reclaim these resource objects, thus reducing the memory usage. Since the JVM can decide to reclaim these objects at any point, sometimes

\(^7\) [../../common/javawscore/developer-index.html#s-javawscore-developer-JNDIDetails](http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ref/SofReference.html)

\(^8\) http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ref/SofReference.html
a resource object can be reclaimed between two subsequent invocations on the same resource. This for example can
cause the state of the resource to be reloaded from disk on each call. To prevent the JVM from reclaiming the resource
objects so quickly a cache can be setup up to hold direct references to these objects. A basic LRU (least recently used)
cache implementation is provided. Other cache implementations can be used as long as they implement the org.glo-

To configure a cache for ResourceHomeImpl first define a cache resource entry in JNDI:

```xml
<resource name="cache"
         type="org.globus.wsrf.utils.cache.LRUCache">
  <resourceParams>
    <parameter>
      <name>factory</name>
      <value>org.globus.wsrf.jndi.BeanFactory</value>
    </parameter>
    <parameter>
      <name>timeout</name>
      <value>120000</value>
    </parameter>
  </resourceParams>
</resource>
```

In this case a LRU cache is configured. The "timeout" parameter (in ms) is used to specify the idle time of the resource
object before it is removed from the cache. The same cache resource can be reused in different services but usually
one cache per service will be configured.

Once the cache resource entry is defined add the "cacheLocation" parameter to the service home resource. The
"cacheLocation" parameter value is the JNDI name of the cache resource:

```xml
<service name="CounterService">
  <resource name="home" type="...">
    <resourceParams>
      ...
      <parameter>
        <name>cacheLocation</name>
        <value>java:comp/env/services/CounterService/cache</value>
      </parameter>
      ...
    </resourceParams>
  </resource>
  ...
  <resource name="cache"
            type="org.globus.wsrf.utils.cache.LRUCache">
    ...
  </resource>
</service>
```

Please note that once the object is removed from the cache it is still up to the JVM to actually reclaim the object.

2.2.2.2. ServiceResourceHome

This implementation does not accept any special parameters.
2.2.3. Usage Statistics Configuration

Java WS Core container and other GT services are configured to send out usage statistics. Please see the usage statistics section for more information.

The targets to which the usage statistics are sent are configured via the usageStatisticsTargets parameter defined in the <globalConfiguration> section of the $GLOBUS_LOCATION/etc/globus_wsrfg_core/server-config.wsdd file. The usageStatisticsTargets parameter specifies a space separated list of targets to which the usage statistics of various components will be sent to. Each target is of form: host[[:port]] (port is optional, if not specified a default port will be assumed). By default usage statistics are sent to usage-stats.globus.org:4810.

To disable sending of the usage statistics remove this parameter, comment it out, or remove all of its values.

2.2.4. Configuration Profiles

Configuration profiles allow for the same Java WS Core installation to have multiple configurations. That is, the same installation can be used to run different containers each with different configuration.

When a .gar file is deployed, a -Dprofile option can be specified to deploy the configuration files under a specific profile name. If the profile name is specified, the deploy operation will drop the configuration file as $GLOBUS_LOCATION/etc/<gar.id>/<profile.name>-server-config.wsdd and/or $GLOBUS_LOCATION/etc/<gar.id>/<profile.name>-jndi-config.xml. The configuration profiles can also be created by hand simply by copying and/or renaming the configuration files appropriately. Each configuration profile should duplicate the contents of $GLOBUS_LOCATION/etc/globus_wsrfg_core/server-config.wsdd and $GLOBUS_LOCATION/etc/globus_wsrfg_core/jndi-config.xml in order to have the basic functionality work properly.

Once a configuration profile is created, the standalone container can be started with a -profile option to load configuration files in a specific profile.

3. Deploying

The Globus services can be run either in the standalone Java WS Core container that is installed with GT, or deployed into Tomcat.

3.1. Java WS Core container

The standalone Java WS Core container can be started and stopped with the provided globus-start-container and globus-stop-container programs. There are also helper programs (available only with the full GT installation) to start and stop the container detached from the controlling terminal (globus-start-container-detached and globus-stop-container-detached). These commands are documented in the Java WS Core Command Reference.

3.1.1. Deploying and undeploying services

To deploy a service into Java WS Core container use the globus-deploy-gar tool. To undeploy a service use globus-undeploy-gar. These commands are documented in the Java WS Core Command Reference.

9 http://www.globus.org/toolkit/docs/4.0/common/javawscore/rn01re01.html
10 http://www.globus.org/toolkit/docs/4.0/common/javawscore/Java_WS_Core_Commandline_Frag.html
11 http://www.globus.org/toolkit/docs/4.0/common/javawscore/Java_WS_Core_Commandline_Frag.html
3.1.2. Recommended JVM settings for the Java WS Core container

It is recommended to increase the maximum heap size of the JVM when running the container. By default on Sun JVMs a 64MB maximum heap size is used. The maximum heap size can be set using the \(-Xmx\) JVM option. Example:

```
$ setenv GLOBUS_OPTIONS -Xmx512M
$ $GLOBUS_LOCATION/bin/globus-start-container
```

The above example will make the container start with maximum heap size set to 512MB.

It is also recommended to experiment with other JVM settings to improve performance. For example, the \(-server\) option on Sun JVMs enables a server VM which can deliver better performance for server applications.

3.2. Deploying into Tomcat

To deploy a Java WS Core installation into Tomcat run:

```
$ cd $GLOBUS_LOCATION
$ ant -f share/globus_wsrf_common/tomcat/tomcat.xml deploySecureTomcat -Dtomcat.dir=<tomcat.dir>
```

Where \(<tomcat.dir>\) is an **absolute** path to the Tomcat installation directory. Also, \(-Dwebapp.name=<name>\) can be specified to set the name of the web application under which the installation will be deployed. By default "wsrf" web application name is used.

The \(deploySecureTomcat\) task will update an existing Tomcat deployment if Java WS Core was already deployed under the specified web application name. The \(redeploySecureTomcat\) task can be used instead to overwrite the existing deployment.

Note

Please note that during deployment a subset of the files from Java WS Core installation is copied into Tomcat. Also, the copied files in Tomcat might have different permissions than the originals.

In addition to the above deployment step you will also need to modify the Tomcat \(<tomcat_root>/conf/server.xml\) configuration file. In particular you will need to add the following configuration entries:

- **Tomcat 4.1.x**
 1. Add a HTTPS Connector in the \(<Service name="Tomcat-Standalone">\) section and update the parameters appropriately with your local configuration:

```
<Connector
    className="org.apache.catalina.connector.http.HttpConnector"
    port="8443" minProcessors="5" maxProcessors="75"
    authenticate="true" secure="true" scheme="https"
    enableLookups="true" acceptCount="10" debug="0">
    <Factory
        className="org.globus.tomcat.catalina.net.HTTPSServerSocketFactory"
        proxy="/path/to/proxy/file"
        cert="/path/to/certificate/file"
        key="/path/to/private/key/file"
        cacertdir="/path/to/ca/certificates/directory"/>
</Connector>
```
In the above the proxy, cert, key and cacertdir attributes are optional. Furthermore, the proxy and the combination of cert and key attributes are mutually exclusive.

Important

The credentials and certificate configuration is used only by the connector and is not used by the rest of the web services stack in Globus Toolkit. To configure credentials for use in the toolkit, refer Security Descriptor.

2. Add a HTTPS Valve in the <Engine name="Standalone" ... > section:

 <Valve className="org.globus.tomcat.catalina.valves.HTTPSValve"/>

• Tomcat 5.0.x

1. Add a HTTPS Connector in the <Service name="Catalina"> section and update the parameters appropriately with your local configuration:

 <Connector
className="org.globus.tomcat.coyote.net.HTTPSConnector"
port="8443" maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
autoFlush="true"
disableUploadTimeout="true" scheme="https"
enableLookups="true" acceptCount="10" debug="0"
proxy="/path/to/proxy/file"
cert="/path/to/certificate/file"
key="/path/to/private/key/file"
cacertdir="/path/to/ca/certificates/directory"/>

In the above the proxy, cert, key and cacertdir attributes are optional. Furthermore, the proxy and the combination of cert and key attributes are mutually exclusive.

Important

The credentials and certificate configuration is used only by the connector and is not used by the rest of the web services stack in Globus Toolkit. To configure credentials for use in the toolkit, refer Security Descriptor.

2. Add a HTTPS Valve in the <Engine name="Catalina" ... > section:

 <Valve className="org.globus.tomcat.coyote.valves.HTTPSValve"/>

• Tomcat 5.5.x

1. Add a HTTPS Connector in the <Service name="Catalina"> section and update the parameters appropriately with your local configuration:

 <Connector
className="org.globus.tomcat.coyote.net.HTTPSConnector"
port="8443" maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
autoFlush="true"
disableUploadTimeout="true" scheme="https"
enableLookups="true" acceptCount="10" debug="0"
proxy="/path/to/proxy/file"
cert="/path/to/certificate/file"
key="/path/to/private/key/file"
cacertdir="/path/to/ca/certificates/directory"/>

12 http://www.globus.org/toolkit/docs/4.0/security/authzframe/security_descriptor.html
13 http://www.globus.org/toolkit/docs/4.0/security/authzframe/security_descriptor.html
In the above the proxy, cert, key and cacertdir attributes are optional. Furthermore, the proxy and the combination of cert and key attributes are mutually exclusive.

1. **Important**

The credentials and certificate configuration is used only by the connector and is not used by the rest of the web services stack in Globus Toolkit. To configure credentials for use in the toolkit, refer Security Descriptor.

2. Add a HTTPS Valve in the `<Engine name="Catalina" ... >` section:

```xml
<Valve className="org.globus.tomcat.coyote.valves.HTTPSValve55"/>
```

Also, you may have to edit `<tomcat.dir>/webapps/wsrf/WEB-INF/web.xml` if you are running Tomcat on a non-default port, i.e. not using port 8443 (HTTPS). For example, if you run Tomcat on port 443 using HTTPS then the WSRF servlet entry should be modified as follows:

```xml
<web-app>
    ...
    <servlet>
        <servlet-name>WSRFServlet</servlet-name>
        <display-name>WSRF Container Servlet</display-name>
        <servlet-class>
            org.globus.wsrf.container.AxisServlet
        </servlet-class>
        <init-param>
            <param-name>defaultProtocol</param-name>
            <param-value>https</param-value>
        </init-param>
        <init-param>
            <param-name>defaultPort</param-name>
            <param-value>443</param-value>
        </init-param>
        <load-on-startup>true</load-on-startup>
    </servlet>
    ...
</web-app>
```

14 http://www.globus.org/toolkit/docs/4.0/security/authzframe/security_descriptor.html
Note

We recommend running Tomcat with Java 1.4.2+.

3.2.1. Enabling local invocations

To enable local invocation in Tomcat you must add axis-url.jar to the CLASSPATH before starting Tomcat.

For example on Windows:

> cd <tomcat.dir>
> set CLASSPATH=<tomcat.dir>\common\lib\axis-url.jar
> bin\startup

On Unix/Linux (csh/tcsh):

$ cd <tomcat.dir>
$ setenv CLASSPATH <tomcat.dir>/common/lib/axis-url.jar
$ bin/startup

3.2.2. Debugging

3.2.2.1. Tomcat log files

Please always check the Tomcat log files under the <tomcat.dir>/logs directory for any errors or exceptions.

3.2.2.2. Enabling Log4J debugging

- Tomcat 4.1.x

 Copy $GLOBUS_LOCATION/lib/commons-logging.jar files to <tomcat.dir>/common/lib directory. Also, copy <tomcat.dir>/webapps/wsrf/WEB-INF/classes/log4j.properties file to <tomcat.dir>/common/classes/ directory. Then configure the Log4j configuration file in <tomcat.dir>/common/classes/ directory appropriately. The debugging settings will affect all the code in all web applications.

- Tomcat 5.0.x, 5.5.x

 Copy $GLOBUS_LOCATION/lib/log4j-1.2.8.jar and $GLOBUS_LOCATION/lib/commons-logging.jar files to <tomcat.dir>/webapps/wsrf/WEB-INF/lib/ directory. Then configure the Log4j configuration file in <tomcat.dir>/webapps/wsrf/WEB-INF/classes/ directory appropriately. The debugging settings will only affect the web application code.

3.2.3. Creating WAR file

To create a .war of a Java WS Core installation do:

$ cd $GLOBUS_LOCATION
$ ant -f share/globus_wsrfg_common/tomcat/tomcat.xml war -Dwar.file=<war.file>

15 http://www.globus.org/toolkit/docs/4.0/common/javawscore/developer-index.html#s-javawscore-developer-LocalInvocations
Where `<warfile>` specifies the absolute path of the war file.

Please note that deploying a war file might not be enough to have a working Java WS Core deployment. For example, in some cases the `xalan.jar` must be placed in the `endorsed` directory of the container.

3.2.4. Deploying and undeploying services

To deploy a service into Tomcat, first deploy the service into a regular GT installation using the `globus-deploy-gar` tool and then deploy the GT installation into Tomcat (as described in Section 3, “Deploying”). Similarly, to undeploy a service, first undeploy the service from a regular GT installation using `globus-undeploy-gar` tool and then deploy the GT installation into Tomcat.

Note

Some GT services may not work properly in Tomcat.

4. Testing

To execute Java WS Core tests first ensure Ant is configured with JUnit (To install JUnit with Ant copy the `junit.jar` found in the JUnit distribution to the `$ANT_HOME/lib` directory).

To execute the test do the following:

1. Start the standalone container with `-nosec` argument:

   ```
   $ cd $GLOBUS_LOCATION
   $ bin/globus-start-container -nosec
   ```

2. Run the interoperability tests:

   ```
   $ ant -f share/globus_wsrarf_test/runtests.xml runServer \
   -Dtests.jar=$GLOBUS_LOCATION/lib/wsrarf_test_interop.jar
   ```

3. Run the unit tests:

   ```
   $ ant -f share/globus_wsrarf_test/runtests.xml runServer \
   -Dtests.jar=$GLOBUS_LOCATION/lib/wsrarf_test_unit.jar -DbasicTestsOnly=true
   ```

4. If some tests failed examine the test results in the `$GLOBUS_LOCATION/share/globus_wsrarf_test/tests/test-reports/` directory.

 Please see the developer guide\(^{16}\) for more information on running the tests and the testing infrastructure.

\(^{16}\) http://www.globus.org/toolkit/docs/4.0/common/javawscore/developer-index.html#s-javawscore-developer-runningtests
5. Security Considerations

5.1. Permissions of service configuration files

The service configuration files such as jndi-config.xml or server-config.wsdd (located under $GLOBUS_LOCATION/etc/<gar>/ directory) may contain private information such as database passwords, etc. Ensure that these configuration files are only readable by the user that is running the container. The deployment process automatically sets the permissions of the jndi-config.xml and server-config.wsdd files as user readable only. However, this might not work correctly on all platforms and this does not apply to any other configuration files.

5.2. Permissions of persistent data

The services using subscription persistence API or other basic persistence helper API will store all or part of its persistent data under the ~/.globus/persisted directory. Ensure that the entire ~/.globus/persisted directory is only readable by the user running the container.

5.3. Invocation of non-public service functions

A client can potentially invoke a service function that is not formally defined in the WSDL but it is defined in the service implementation class. There are two ways to prevent this from happening:

1. Define all service methods in your service class as either private or protected.
2. Configure appropriate allowedMethods or allowedMethodsClass parameter in the service deployment descriptor (please see Java WS Core Configuration for details).

6. Troubleshooting

6.1. globus-stop-container fails with an authorization error

By default globus-stop-container must be executed with the same credentials as the container it is running with. If the ShutdownService or the container is configured with separate private key and certificate files (usually /etc/grid-security/containercert.pem and /etc/grid-security/containerkey.pem) do the following to stop the container:

```bash
$ grid-proxy-init -cert /etc/grid-security/containercert.pem \
    -key /etc/grid-security/containerkey.pem \
    -out containerproxy.pem
$ setenv X509_USER_PROXY containerproxy.pem
$ globus-stop-container
$ unsetenv X509_USER_PROXY
$ rm containerproxy.pem
```

Alternatively, the ShutdownService can be configured with a separate gridmap file to allow a set of users to stop the container. Please see the WS Authentication & Authorization section for details.

17 ../../security/wsaa.html
6.2. globus-start-container hangs during startup

By default Sun 1.4.x+ JVMs are configured to use /dev/random device as an entropy source. Sometimes the machine can run out of entropy and applications (such as the container) using the /dev/random device will block until more entropy is available. One workaround for this issue is to configure the JVM to use /dev/urandom (non-blocking) device instead. For Sun JVMs a java.security.egd system property can be set to configure a different entropy source. To set the system property and pass it to globus-start-container script do the following:

```
export GLOBUS_OPTIONS=-Djava.security.egd=file:/dev/urandom
```
or

```
setenv GLOBUS_OPTIONS -Djava.security.egd=file:/dev/urandom
```

The same issue can also affect client programs. If you are running a client program with a GT generated script, you can set the GLOBUS_OPTIONS environment property as described above. However, if you are using a custom script or directly launching a program using the java command line, make sure to set the java.security.egd system property explicitly on the java command line. For example:

```
java -classpath $CLASSPATH -Djava.security.egd=file:/dev/urandom my.package.FooProgram
```

Note: This does not apply to Windows machines.

6.3. Programs fail with java.lang.NoClassDefFoundError: javax/security/... errors

These errors might occur when running with J2SE 1.3.1 and the JAAS\(^{18}\) library is not installed. Either install the JAAS\(^{19}\) library or upgrade to J2SE 1.4.x or higher.

6.4. ConcurrentModificationException in Tomcat 5.0.x

If the following exception is visible in the Tomcat logs at startup it might cause the HTTPSValve to fail:

```
java.util.ConcurrentModificationException
at java.util.HashMap$HashIterator.nextEntry(HashMap.java:782)
at java.util.HashMap$EntryIterator.next(HashMap.java:824)
at java.util.HashMap.putAllForCreate(HashMap.java:424)
at java.util.HashMap.clone(HashMap.java:656)
at mx4j.server.DefaultMBeanRepository.clone(DefaultMBeanRepository.java:56)
```

The HTTPSValve might fail with the following exception:

```
java.lang.NullPointerException
at org.apache.coyote.tomcat5.CoyoteRequest.setAttribute(CoyoteRequest.java:1472)
```

\(^{19}\) http://java.sun.com/products/jaas/install_notes.html
These exceptions will prevent the transport security to work properly in Tomcat.

This is a Tomcat bug. Keep restarting Tomcat until it starts without the ConcurrentModificationException or switch to a different version of Tomcat.

java.net.SocketException: Invalid argument or cannot assign requested address

If you see the "java.net.SocketException: Invalid argument or cannot assign requested address" error in the container log or on the client side try setting the following property:

```
$ export GLOBUS_OPTIONS="-Djava.net.preferIPv4Stack=true"
```

6.6. General troubleshooting information

In general, if you want to investigate a problem on your own please see the [Debugging and Logging](#) section for details on how to turn on debugging. Also, please note that most of the command line clients have a `-debug` option that will display more detailed error messages, including the error stack traces. Also, searching the mailing lists such as [gt-user@globus.org](http://dev.globus.org/wiki/Mailing_Lists) or [gt-dev@globus.org](http://dev.globus.org/wiki/Mailing_Lists) (before posting a message) can also be very fruitful. Finally, if you think you have found a bug please report it in our [Bugzilla](http://bugzilla.globus.org/bugzilla/) system. Please include as much as detail about the problem as possible.

7. Usage statistics collection by the Globus Alliance

The following usage statistics are sent by Java WS Core by default in a UDP packet (in addition to the Java WS Core component code, packet version, timestamp, and the source IP address):

- **On container startup:**
 - container id - random number
 - container type - standalone, servlet, or unknown
 - event type - container startup
 - list of services - service names only
- **On container shutdown:**
 - container id - random number
 - container type - standalone, servlet, or unknown
 - event type - container shutdown
• list of activated services - service names only (4.0.3+)
• container uptime (4.0.3+)

If you wish to disable this feature, please see the Java WS Core System Administrator's Guide section on Usage Statistics Configuration for instructions.

Also, please see our policy statement\(^\text{25}\) on the collection of usage statistics.

\(^{25}\) http://www.globus.org/toolkit/docs/4.0/Usage_Stats.html
Chapter 10. RFT Admin Guide

1. Building and Installing

RFT is built and installed as part of a default GT 4.0 installation. For basic installation instructions, see the GT 4.0 System Administrator’s Guide. No extra installation steps are required for this component.

The following are specialized instructions for advanced developers who want to deploy latest code from CVS:

Build RFT from CVS:

1. Configure your CVSROOT to point to the globus CVS location.
2. Run:

   ```bash
cvs co ws-transfer
   ```
3. Run:

   ```bash
cd ws-transfer/reliable
   ```
4. Set GLOBUS_LOCATION to point to your globus installation.
5. Run:

   ```bash
   ant deploy
   ```

2. Configuring

2.1. Configuration overview

RFT has the following prerequisites:

- **Java WS Core** - This is built and installed in a default GT 4.0 installation.
- A host certificate (see Required Configuration).
- **GridFTP** - GridFTP performs the actual file transfer and is built and installed in a default GT 4.0 installation.
- PostgreSQL - PostgreSQL is used to store the state of the transfer to allow for restart after failures. The interface to PostgreSQL is JDBC, so any DBMS that supports JDBC can be used, although no others have been tested. For instructions on configuring the PostgreSQL database for RFT, click here.

1. http://www.globus.org/toolkit/docs/4.0/admin/docbook/
2. ../../common/javawscore/
3. ../../admin/docbook/
4. ../../admin/docbook/
5. ../../data/gridftp/
6. ../../admin/docbook/
7. ../../data/rft/admin-index.html#s-rft-admin-postgresql

2.2. Syntax of the interface

The security of the service can be configured by modifying the security descriptor\(^8\). It allows for configuring the credentials that will be used by the service, type of authentication and authorization that needs to be enforced. By default, the following security configuration is installed:

- Credentials set for use by the container are used. If they are not specified, default credentials are used.
- GSI Secure conversation authentication is enforced for all methods.

Note: Changing the required authentication and authorization method will require suitable changes to the clients that contact this service.

To alter the security descriptor configuration, refer to Security Descriptors\(^9\). The file to be altered is \$GLOBUS_LOCATION/etc/globus_wsrf_rft/security-config.xml.

2.3. Required configuration: configuring the PostgreSQL database

PostgreSQL (version 7.1 or greater) needs to be installed and configured for RFT to work. You can either use the packages which came with your operating system (RPMs, DEBs, ...) or build from source. We used PostgreSQL version 7.3.2 for our testing and the following instructions are good for the same.

1. Install PostgreSQL. Instructions on how to install/configure PostgreSQL can be found here\(^10\).

2. Configure the postmaster daemon so that it accepts TCP connections. This can be done by adding the "-o -i" switch to the postmaster script (This is either the init.d script found in /etc/init.d/postgresql or /var/lib/, depending on how you installed PostgreSQL). Follow the instructions here\(^11\) to start the postmaster with the -i option.

3. You will now need to create a PostgreSQL user that will connect to the database. This is usually the account under which the container is running. You can create a PostgreSQL user by running the following command: `su postgres; createuser globus`. If you get the following error: psql: could not connect to server: No such file or directory Is the server running locally and accepting connections on Unix domain socket "/tmp/.s.PGSQL.5432"? this generally means that either your postmaster is not started with the -i option or you didn't restart the postmaster after the above mentioned step.

4. Now you need to set security on the database you are about to create. You can do it by following the steps below:

 sudo vi /var/lib/pgsql/data/pg_hba.conf and append the following line to the file:

   ```
   host rftDatabase "username" "host-ip" 255.255.255.255 md5
   ```

 Note: use crypt instead of md5 if you are using PostgreSQL 7.3 or earlier.

 sudo /etc/init.d/postgresql restart

5. To create the database that is used for RFT run (as user globus): `createdb rftDatabase`.

\(^8\) http://www.postgresql.org/docs/manuals/
\(^9\) http://www.postgresql.org/docs/7.4/static/postmaster-start.html
\(^10\) http://www.postgresql.org/docs/7.4/static/postmaster-start.html
6. To populate the RFT database with the appropriate schemas run: `psql -d rftDatabase -f $GLOBUS_LOCATION/share/globus_wsrfrft/rft_schema.sql`. Now that you have created a database to store RFT's state, the following steps configure RFT to find the database:

7. Open `$GLOBUS_LOCATION/etc/globus_wsrfrft/jndi-config.xml`.

8. Find the `dbConfiguration` section under the `ReliableFileTransferService <service>` section.

9. Change the `connectionString` to point to the machine on which you installed PostgreSQL and to the name of the database you used in step 2. If you installed PostgreSQL on the same machine as your Globus install, the default should work fine for you.

10. Change the `userName` to the name of the user who owns/created the database and do the same for the password (it also depends on how you configured your database).

11. Don’t worry about the other parameters in the section. The defaults should work fine for now.

12. Edit the configuration section under `ReliableFileTransferService`. There are two values that can be edited in this section:

13. • `backOff`: Time in seconds you want RFT to backoff before a failed transfer is retried by RFT. The default should work fine for now.

14. • `maxActiveAllowed`: This is the number of transfers the container can do at given point. The default should be fine for now.

2.4. RFT auto-registration with default WS MDS Index Service

With a default GT 4.0.1 installation, the RFT service is automatically registered with the default WS MDS Index Service\(^\text{12}\) running in the same container for monitoring and discovery purposes.

Note

If you are using GT 4.0.0, we strongly recommend upgrading to 4.0.1 to take advantage of this capability.

However, if must use GT 4.0.0, or if this registration was turned off and you want to turn it back on, this is how it is configured:

There is a jndi resource defined in `$GLOBUS_LOCATION/etc/globus_wsrfrft/jndi-config.xml` as follows:

```xml
<resource name="mdsConfiguration"

type="org.globus.wsrfrft.impl.servicegroup.client.MDSConfiguration">
<resourceParams>
<parameter>
    <name>reg</name>
    <value>true</value>
</parameter>
</resourceParams>
</resource>
```

\(^{12}\) http://www.globus.org/toolkit/docs/4.0/info/index/
To configure the automatic registration of RFT to the default WS MDS Index Service, change the value of the parameter `<reg>` as follows:

- `true` turns on auto-registration; this is the default in GT 4.0.1.
- `false` turns off auto-registration; this is the default in GT 4.0.0.

2.4.1. Configuring resource properties

By default, the following resource properties (from the RFT Factory Resource) are sent to the default Index Service:

- **ActiveResourceInstances**: A dynamic resource property of the total number of active RFT resources in the container at a given point of time.

- **TotalNumberOfTransfers**: A dynamic resource property of the total number of transfers/deletes performed since the RFT service was deployed in this container.

- **TotalNumberOfActiveTransfers**: A dynamic resource property of the number of active transfers across all rft resources in a container at a given point of time.

- **TotalNumberOfBytesTransferred**: A dynamic resource property of the total number of bytes transferred by all RFT resources created since the deployment of the service.

- **RFTFactoryStartTime**: Time when the service was deployed in the container. Used to calculate uptime.

- **DelegationServiceEPR**: The end point reference of the Delegation resource that holds the delegated credential used in executing the resource.

You can configure which resource properties are sent in RFT's `registration.xml` file, `SGLOBUS_LOCATION/etc/globus_wsrf_rft/registration.xml`. The following is the relevant section of the file:

```xml
<Content xsi:type="agg:AggregatorContent"
xmlns:agg="http://mds.globus.org/aggregator/types">

<agg:AggregatorConfig xsi:type="agg:AggregatorConfig">

<agg:GetMultipleResourcePropertiesPollType
xmlns:rft="http://www.globus.org/namespaces/2004/10/rft">
 <!-- Specifies that the index should refresh information every 60000 milliseconds (once per minute) -->
 <agg:PollIntervalMillis>60000</agg:PollIntervalMillis>

 <!-- specifies that all Resource Properties should be collected from the RFT factory -->
 <agg:ResourcePropertyNames>rft:TotalNumberOfActiveTransfers</agg:ResourcePropertyNames>
</agg:GetMultipleResourcePropertiesPollType>
</agg:AggregatorConfig>
</Content>
```
2.5. Registering RFT manually with default WS MDS Index Service

If a third party needs to register an RFT service manually, see Registering with mds-servicegroup-add\(^\text{13}\) in the WS MDS Aggregator Framework documentation.

3. Using MySQL

RFT in 4.0.1 works with MySQL database. A MySQL schema file is provided at $GLOBUS_LOCATION/share/globus_wsrf_rft/rft_schema_mysql.sql. You will need to download MySQL drivers (MySQL connector/J) from here\(^\text{14}\) and copy the driver jar to $GLOBUS_LOCATION/lib. You will also need to make following changes:

1. Create a RFT Database and populate it with mysql schema.

   ```
   mysqladmin -h hostname create rftDatabase -p
   mysql -h hostname -D rftDatabase
   source share/globus\_wsrf\_rft/rft\_schema\_mysql.sql
   ```

 Note: If you are using older (earlier than 4.1) versions of mysql you will need to use $GLOBUS_LOCATION/share/globus_wsrf_rft/rft_schema_mysql_pre4.0.sql schema to make RFT work. See Bug 3633\(^\text{15}\) for more details. Older versions of the connector/J may also cause problems. See Bug 5509\(^\text{16}\) for more details.

2. Edit $GLOBUS_LOCATION/etc/globus_wsrf_rft/jndi-config.xml and change values of connectionString to jdbc:mysql:///rftDatabase from jdbc:postgresql://host/rftDatabase and driverName to com.mysql.jdbc.Driver from org.postgresql.Driver and userName and password to whatever was set during creation of users for mysql.

4. Deploying

RFT is deployed as part of a standard toolkit installation. Please refer to the System Administrator's Guide\(^\text{17}\) for details.

\(^{13}\) http://www.globus.org/toolkit/docs/4.0/info/aggregator/re01.html#mds-servicegroup-add-registering

\(^{14}\) http://dev.mysql.com/downloads/connector/j/

\(^{15}\) http://bugzilla.globus.org/globus/show_bug.cgi?id=3633

\(^{16}\) http://bugzilla.globus.org/globus/show_bug.cgi?id=5509

\(^{17}\) ../../admin/docbook/
4.1. Deploying into Tomcat

RFT has been tested to work without any additional setup when deployed into Tomcat. Please follow these basic instructions\(^\text{18}\) to deploy GT4 services into Tomcat. Note: you need to configure the GT4 install with the needed RFT configuration (like database configuration, etc) before you deploy into Tomcat.

5. Testing

RFT Testing

1. Set \$GLOBUS_LOCATION to point to your Globus install.

2. Start a gridftp server on the machine you are running the tests on the default port. This can be done by running:

 \$GLOBUS_LOCATION/sbin/globus-gridftp-server -p 2811 &

3. Start the container with RFT deployed in it.

4. Edit \$GLOBUS_LOCATION/share/globus_wsrfl_rft_test/test.properties. Put in appropriate values for properties like authzValue (self or host), HOST (host ip of container), PORT (port on which the container is listening), sourceHost and destinationsHost (hostnames of gridftp servers). The default values will work fine if you are running the tests with a standard stand-alone container started with user credentials (self authorization is done in this case). If the container is started using host credentials, change authzVal to host. If the gridftp servers you are using for your testing are started as user, you need to supply subject names of the users in sourceSubject and destinationSubject for authorization with gridftp servers. If both the source and destination servers are started as one user, you can just fill in the user's subject in the subject field of test.properties. If you are getting Authentication/Authorization Failures because of mismatched subject names then your authzVal and authType (uses transport security by default) need to be changed, depending on how you start the container. If you started the container with the -nosec option then you need to change authType to GSI_MESSAGE, PROTOCOL to http and PORT to 8080.

5. The *.xfr files in \$GLOBUS_LOCATION/share/globus_wsrfl_rft_test/ are the transfer files that will be used in the tests. Again, the default values work fine if you followed the instructions so far.

6. Run the following command, which will run all the RFT unit tests:

 ant -Dtests.jar=$GLOBUS_LOCATION/lib/globus_wsrfl_rft_test.jar -f share/globus_wsrfl_rft_test/runtests.xml

7. Run the following command to generate the test reports in html form:

 ant -f share/globus_wsrfl_rft_test/runtests.xml generateTestReport

\(^{18}\) http://www.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html#javawscore-admin-tomcat-deploying
6. Security Considerations

6.1. Permissions of service configuration files

The service configuration files such as jndi-config.xml and server-config.wsdd (located under etc/<gar>/directory) contain private information such as database passwords and usernames. Ensure that these configuration files are only readable by the user that is running the container.

The deployment process automatically sets the permissions of jndi-config.xml and server-config.wsdd as user readable only. However, this might not work correctly on all platforms and this does not apply to any other configuration files.

6.2. Access of information stored in the database

RFT stores the transfer requests in a database. Proper security measures need to be taken to protect the access of the data by granting/revoking appropriate permissions on tables that are created for RFT use and other steps that are appropriate and consistent with site specific security measures.

6.3. Permissions of persistent data

RFT uses the subscription persistence API from the GT4 core to store all of its subscription data under the ~/.globus/persisted directory. Ensure that the entire ~/.globus/persisted directory is only readable by the user running the container.

7. Troubleshooting

7.1. PostgreSQL not configured

Problem: If RFT is not configured properly to talk to a PostgreSQL database, you will see this message displayed on the console when you start the container:

"Error creating RFT Home: Failed to connect to database ...
Until this is corrected all RFT request will fail and all GRAM jobs that require staging will fail"

Solution: The usual cause is that Postmaster is not accepting TCP connections, which means that you must restart Postmaster with the -i option (see Section 2.3, “Required configuration: configuring the PostgreSQL database”).

7.2. More verbose error messages

Problem: Make RFT print more verbose error messages

Solution: Edit $GLOBUS_LOCATION/container-log4j.properties and add the following line to it: log4j.category.org.globus.transfer=DEBUG. For more verbosity add log4j.category.org.globus.ftp=DEBUG, which will print out Gridftp messages too.

7.3. RFT fault-tolerance and recovery

RFT uses PostgreSQL to check-point transfer state in the form of restart markers and recover from transient transfer failures, using retry mechanism with exponential backoff, during a transfer. RFT has been tested to recover from source and/or destination server crashes during a transfer, network failures, container failures (when the machine running the
container goes down), file system failures, etc. RFT Resource is implemented as a PersistentResource, so ReliableFile-TransferHome gets initialized every time a container gets restarted. Please find a more detailed description of fault-tolerance and recovery in RFT below:

- Source and/or destination GridFTP failures: In this case RFT retries the transfer for a configurable number of maximum attempts with exponential backoff for each retry (the backoff time period is configurable also). If a failure happens in the midst of a transfer, RFT uses the last restart marker that is stored in the database for that transfer and uses it to resume the transfer from the point where it failed, instead of restarting the whole file. This failure is treated as a container-wide backoff for the server in question. What this means is that all other transfers going to/from that server, across all the requests in a container, will be backed off and retried. This is done in order to prevent further failures of the transfers by using knowledge available in the database.

- Network failures: Sometimes this happens due to heavy load on a network or for any other reason packets are lost or connections get timed out. This failure is considered a transient failure and RFT retries the transfer with exponential backoff for that particular transfer (and not the whole container, as with the source and/or destination GridFTP failures).

- Container failures: These type of failures occur when the machine running the container goes down or if the container is restarted with active transfers. When the container is restarted, it restarts ReliableTransferHome, which looks at the database for any active RFT resources and restarts them.

7.3.1. Failure modes that are not addressed:

- Running out of disk space for the database.

8. Usage statistics collection by the Globus Alliance

The following usage statistics are sent by default in a UDP packet at the end of life time of each RFT Resource (or when a RFT resource is destroyed).

- Total number of files transferred by RFT since RFT was installed
- Total number of bytes transferred by RFT since RFT was installed
- Total number of files transferred in this RFT Resource
- Total number of bytes transferred in this RFT Resource
- Creation time of this RFT Resource
- Factory Start Time

We have made a concerted effort to collect only data that is not too intrusive or private, and yet still provides us with information that will help improve the GRAM component. Nevertheless, if you wish to disable this feature, please see the Java WS Core System Administrator's Guide section on Usage Statistics Configuration for instructions.

Also, please see our policy statement on the collection of usage statistics.

19 http://www.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html#s-javawscore-Interface_Config_Frag-usageStatisticsTargets
20 http://www.globus.org/toolkit/docs/4.0/Usage_Stats.html
Chapter 11. WS GRAM Admin Guide

1. Building and Installing

WS GRAM is built and installed as part of a default GT 4.0 installation. For basic installation instructions, see the GT 4.0 System Administrator's Guide.¹

As part of the WS GRAM service setup, please review our guide for optimal scalability and performance recommendations.

1.1. Installation Requirements

- Transport Level Security (TLS)
- Functioning sudo
- Local Scheduler
- Scheduler Adapter
- GridFTP
- RFT

1.1.1. Transport Level Security (TLS)

In order to use WS GRAM, the container must be started with Transport Level security (which is the default). The \texttt{-nosec} option should not be used with \texttt{globus-start-container}.

1.1.2. Functioning sudo

WS GRAM requires that the \texttt{sudo} command is installed and functioning on the service host where WS GRAM software will execute.

Authorization rules will need to be added to the \texttt{sudoers} file to allow the WS GRAM service account to execute (without a password) the scheduler adapter in the accounts of authorized GRAM users. For configuration details, see the Configuring sudo section.

Platform Note: On AIX, sudo is not installed by default, but it is available as source and rpm here: AIX 5L Toolbox for Linux Applications².

1.1.3. Local Scheduler

WS GRAM depends on a local mechanism for starting and controlling jobs. Included in the WS GRAM software is a Fork\, scheduler, which requires no special software installed to execute jobs on the local host. However, to enable WS GRAM to execute and manage jobs to a batch scheduler, the scheduler software must be installed and configured prior to configuring WS GRAM.

¹ \url{http://www.globus.org/toolkit/docs/4.0/admin/docbook/}
² \url{http://www-1.ibm.com/servers/aix/products/aixos/linux/download.html}
1.1.4. Scheduler Adapter

WS GRAM depends on scheduler adapters to translate the WS GRAM job description document into commands understood by the local scheduler, as well as to monitor the jobs.

Scheduler adapters included in the GT 4.0 release are: PBS\(^3\), Condor\(^4\), LSF\(^5\).

Other third party scheduler adapters available for GT 4.0.x releases:

- Sun Grid Engine\(^6\)
- LoadLeveler - as of release 3.3.1 IBM LoadLeveler includes a GRAM Scheduler Adapter. For more information see "What's new" in the LoadLeveler product documentation\(^7\)
- GridWay\(^8\) - installation and configuration guide is here\(^9\)

For configuration details, see the Configuring scheduler adapters section.

1.1.5. GridFTP

Though staging directives are processed by RFT (see next section), RFT uses GridFTP servers underneath to do the actual data movement. As a result, there must be at least one GridFTP server that shares a file system with the execution nodes. There is no special process to get staged files onto the execution node before the job executable is run. See the Non-default GridFTP server section of this admin guide for details on how to configure WS GRAM for your GridFTP servers used in your execution environment.

1.1.6. Reliable File Transfer Service (RFT)

WS GRAM depends on RFT to perform file staging and cleanup directives in a job description. For configuration details, see the RFT admin guide\(^10\).

⚠️ Important

Jobs requesting these functions will fail if RFT is not properly setup.

2. Configuring

2.1. Typical Configuration

2.1.1. Configuring sudo

When the credentials of the service account and the job submitter are different (multi user mode), then GRAM will prepend a call to sudo to the local adapter callout command.

\(^3\) http://www.openpbs.org/
\(^4\) http://www.cs.wisc.edu/condor/
\(^5\) http://www.platform.com/Products/Platform.LSF.Family/Platform.LSF/
\(^6\) http://www.lesc.ic.ac.uk/projects/SGE-GT4.html
\(^8\) http://www.grid4utility.org/software.php
\(^9\) http://www.grid4utility.org/documents.php
\(^10\) http://www.globus.org/toolkit/docs/4.0/data/rft/admin-index.html

80
Important

If sudo is not configured properly, the command, and thus job, will fail.

As *root*, here are the two lines to add to the `/etc/sudoers` file for each GLOBUS_LOCATION installation, where `/opt/globus/GT4.0.5` should be replaced with the GLOBUS_LOCATION for your installation:

```
# Globus GRAM entries
globus  ALL=(username1,username2) \ 
   NOPASSWD: /opt/globus/GT4.0.5/libexec/globus-gridmap-and-execute \ 
   -g /etc/grid-security/grid-mapfile /opt/globus/GT4.0.5/libexec/globus-job-manager-script.pl *
globus  ALL=(username1,username2) \ 
   NOPASSWD: /opt/globus/GT4.0.5/libexec/globus-gridmap-and-execute \ 
   -g /etc/grid-security/grid-mapfile /opt/globus/GT4.0.5/libexec/globus-gram-local-proxy-tool *
```

The `globus-gridmap-and-execute` program is used to ensure that GRAM only runs programs under accounts that are in the grid-mapfile. In the sudo configuration, it is the first program called. It looks up the account in the grid-mapfile and then runs the requested command. It is redundant if sudo is properly locked down. This tool could be replaced with your own authorization program.

2.1.2. Configuring Scheduler Adapters

The WS GRAM scheduler adapters included in the release tarball are: *PBS, Condor* and *LSF*. To install, follow these steps (using PBS as our example):

```
% cd $GLOBUS_LOCATION\gt4.0.0-all-source-installer

% make gt4-gram-pbs

% make install
```

Make sure the scheduler commands are in your path (**qsub, qstat, pbsnodes**).

For PBS, another setup step is required to configure the remote shell for rsh access:

```
% cd $GLOBUS_LOCATION/setup/globus

% ./setup-globus-job-manager-pbs --remote-shell=rsh
```

The last thing is to define the GRAM and GridFTP file system mapping for PBS. A default mapping in this file is created to allow simple jobs to run. However, the actual file system mappings for your compute resource should be entered to ensure:

- files staging is performed correctly
- jobs with erroneous file path directives are rejected

Done! You have added the PBS scheduler adapters to your GT installation.
Note

For future GT builds with scheduler adapters: scheduler adapters can be enabled by adding `--enable-wsgram-pbs` to the configure line when building the entire toolkit. For example:

```
% configure --prefix=$GLOBUS_LOCATION --enable-wsgram-pbs ...
% make
% make install
```

2.2. Non-default Configuration

2.2.1. Non-default Credentials

To run the container using just a user proxy, instead of host creds, edit the `$GLOBUS_LOCATION/etc/globus_ws-rf_core/global_security_descriptor.xml` file, and either comment out the credentials section...

```
<?xml version="1.0" encoding="UTF-8"?>
<securityConfig xmlns="http://www.globus.org">
  <!--
  <credential>
    <key-file value="/etc/grid-security/containerkey.pem"/>
    <cert-file value="/etc/grid-security/containercert.pem"/>
  <credential>
  -->
  <gridmap value="/etc/grid-security/grid-mapfile"/>
</securityConfig>
```

or replace the credentials section with a proxy file location...

```
<?xml version="1.0" encoding="UTF-8"?>
<securityConfig xmlns="http://www.globus.org">
  <proxy-file value="<PATH TO PROXY FILE>"/>
  <gridmap value="/etc/grid-security/grid-mapfile"/>
</securityConfig>
```

Running in personal mode (user proxy), another GRAM configuration setting is required. For GRAM to authorize the RFT service when performing staging functions, it needs to know the subject DN for verification. Here are the steps:

```
% cd $GLOBUS_LOCATION/setup/globus
% ./setup-gram-service-common --staging-subject="/DC=org/DC=doegrids/OU=People/CN=Stuart Martin 564720"
```

You can get your subject DN by running this command:
2.2.2. Non-default GridFTP server

By default, the GridFTP server is assumed to run as root on localhost:2811. If this is not true for your site, then change it by editing the GridFTP host and/or port in the GRAM and GridFTP file system mapping config file:

$GLOBUS_LOCATION/etc/gram-service/globus_gram_fs_map_config.xml

2.2.3. Non-default container port

By default, the globus services will assume 8443 is the port the Globus container is using. However the container can be run under a non-standard port, for example:

% globus-start-container -p 4321

2.2.4. Non-default gridmap

If you wish to specify a non-standard gridmap file in a multi-user installation, two basic configurations need to be changed:

- $GLOBUS_LOCATION/etc/globus_wsrf_core/global_security_descriptor.xml
 - As specified in the gridmap config\(^\text{11}\) instructions, add a `<gridmap value="..."/>` element to the file as appropriate.

- /etc/sudoers
 - Change the file path after all `-g` options:

 `-g /path/to/grid-mapfile`

Example config for `global_security_descriptor.xml`:

```
...  
<gridmap value="/opt/grid-mapfile"/>
...
```

Example config for `sudoers`:

```
...
```

\(^\text{11}\) http://www.globus.org/toolkit/docs/4.0/security/authzframe/security_descriptor.html#s-authzframe-secdesc-configGridmap
Globus GRAM entries

globus ALL=(username1,username2)
NOPASSWD: /opt/globus/GT4.0.0/libexec/globus-gridmap-and-execute
-g /opt/grid-mapfile
/opt/globus/GT4.0.0/libexec/globus-job-manager-script.pl *

globus ALL=(username1,username2)
NOPASSWD: /opt/globus/GT4.0.0/libexec/globus-gridmap-and-execute
-g /opt/grid-mapfile
/opt/globus/GT4.0.0/libexec/globus-gram-local-proxy-tool *

...

2.2.5. Non-default RFT deployment

RFT is used by GRAM to stage files in and out of the job execution environment. In the default configuration, RFT is hosted in the same container as GRAM and is assumed to have the same service path and standard service names. This need not be the case. For example, the most likely alternative scenario is that RFT would be hosted separately in a container on a different machine. In any case, both the RFT and the Delegation Service endpoints need to be adjustable to allow this flexibility. The following options can be passed to the `setup-gram-service-common` script to affect these settings:

\[\text{--staging-protocol=<protocol>}\]
\[\text{--staging-host=<host>}\]
\[\text{--staging-port=<port>}\]
\[\text{--staging-service-path=<RFT and Delegation factory service path>}\]
\[\text{--staging-factory-name=<RFT factory service name>}\]
\[\text{--staging-delegation-factory-name=<name of Delegation factory service used by RFT>}\]

For example:

\[
% \text{setup-gram-service-common } \\
\text{--staging-protocol=https} \\
\text{--staging-host=machine.domain.net} \\
\text{--staging-delegation-factory-name=machine.domain.net}
\]

will internally cause the GRAM service code to construct the following EPR addresses.

\[
\text{http://machine.domain.net:8444/wsrf/services/ReliableFileTransferFactoryService} \\
\text{http://machine.fakedomain.net:8444/wsrf/services/DelegationFactoryService}
\]

2.3. Locating configuration files

All the GRAM service configuration files are located in subdirectories of the $GLOBUS_LOCATION/etc directory. The names of the GRAM configuration directories all start with `gram-service`. For example, with a default GRAM installation, the command line:
% ls etc | grep gram-service
gives the following output:

gram-service
gram-service-Fork
gram-service-Multi

2.4. Web service deployment configuration

The file $GLOBUS_LOCATION/etc/gram-service/server-config.wsdd contains information necessary to deploy and instantiate the GRAM services in the Globus container.

Three GRAM services are deployed:

• ManagedExecutableJobService: service invoked when querying or managing an executable job
• ManagedMultiJobService: service invoked when querying or managing a multijob
• ManagedJobFactoryService: service invoked when submitting a job

Each service deployment information includes:

• name of the Java service implementation class
• path to the WSDL service file
• name of the operation providers that the service reuses for its implementation of WSDL-defined operations
• etc...

More information about the service deployment configuration information can be found here\(^\text{12}\).

2.5. JNDI application configuration

The configuration of WSRF resources and application-level services not related to service deployment is contained in JNDI\(^\text{13}\) files. The JNDI-based GRAM configuration is of two kinds: common job factory and local resource manager.

2.5.1. Common job factory configuration

The file $GLOBUS_LOCATION/etc/gram-service/jndi-config.xml contains configuration information that is common to every local resource manager.

More precisely, the configuration data it contains pertains to the implementation of the GRAM WSRF resources (factory resources and job resources), as well as initial values of WSRF resource properties that are always published by any Managed Job Factory WSRF resource.

The data is categorized by service, because according to WSRF, in spite of the service/resource separation of concern, a given service will use only one XML Schema type of resource. In practice, it is clearer to categorize the configuration

\(^\text{12}\) http://www.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html#s-javawscore-admin-configuring
\(^\text{13}\) http://java.sun.com/products/jndi/
resource implementation by service, even if, theoretically speaking, a given resource implementation could be used by several services. For more information, refer to the Java WS Core documentation14.

Here is the breakdown, in JNDI objects, of the common configuration data categorized by service. Each XYZHome object contains the same Globus Core-defined information for the implementation of the WSRF resource, such as the Java implementation class for the resource (resourceClass datum), the Java class for the resource key (resourceKeyType datum), etc.

- ManagedExecutableJobService
 - ManagedExecutableJobHome: configures the implementation of resources for the service.
- ManagedMultiJobService
 - ManagedMultiJobHome: configures the implementation of resources for the service
- ManagedJobFactoryService
 - FactoryServiceConfiguration: encapsulates configuration information used by the factory service. Currently it identifies the service to associate with a newly created job resource in order to create an endpoint reference and return it.
 - ManagedJobFactoryHome: implementation of resources for the service resourceClass
 - FactoryHomeConfiguration: contains GRAM application-level configuration data, i.e., values for resource properties common to all factory resources. For example, the path to the Globus installation, host information (such as CPU type), manufacturer, operating system name and version, etc.

2.5.2. Local resource manager configuration

When a SOAP call is made to a GRAM factory service in order to submit a job, the call is actually made to a GRAM service-resource pair, where the factory resource represents the local resource manager to be used to execute the job.

There is one directory, gram-service-<manager>/, for each local resource manager supported by the GRAM installation.

For example, let us assume that the command line:

\[
\text{% ls etc | grep gram-service-}
\]

gives the following output:

gram-service-Fork
gram-service-LSF
gram-service-Multi

In this example, the Multi, Fork and LSF job factory resources have been installed. Multi is a special kind of local resource manager which enables the GRAM services to support multijobs15.

14 http://www.globus.org/toolkit/docs/4.0/common/javawscore/index.html
15 http://www.globus.org/toolkit/docs/4.0/execution/wsgram/user-index.html#s-wsgram-user-specifyingmultijob
The JNDI configuration file located under each manager directory contains configuration information for the GRAM support of the given local resource manager, such as the name that GRAM uses to designate the given resource manager. This is referred to as the GRAM name of the local resource manager.

For example, $GLOBUS_LOCATION/etc/gram-service-Fork/jndi-config.xml contains the following XML element structure:

```
<service name="ManagedJobFactoryService">
   <!-- LRM configuration: Fork -->
   <resource
      name="ForkResourceConfiguration"
      type="org.globus.exec.service.factory.FactoryResourceConfiguration">
      <resourceParams>
         [...
         <parameter>
            <name>
               localResourceManagerName
            </name>
            <value>
               Fork
            </value>
         </parameter>
         <!-- Site-specific scratchDir
         Default: ${GLOBUS_USER_HOME}/.globus/scratch
         <parameter>
            <name>
               scratchDirectory
            </name>
            <value>
               ${GLOBUS_USER_HOME}.globus/scratch
            </value>
         </parameter>
      </resourceParams>
   </resource>
</service>
```

In the example above, the name of the local resource manager is Fork. This value can be used with the GRAM command line client in order to specify which factory resource to use when submitting a job. Similarly, it is used to create an endpoint reference to the chosen factory WS-Resource when using the GRAM client API.

In the example above, the scratchDirectory is set to ${GLOBUS_USER_HOME}/.globus/scratch. This is the default setting. It can be configured to point to an alternate file system path that is common to the compute cluster and is typically less reliable (auto purging), while offering a greater amount of disk space (thus "scratch").

2.6. Security descriptor

The file $GLOBUS_LOCATION/etc/gram-service/managed-job-factory-security-config.xml contains the Core security configuration for the GRAM ManagedJobFactory service, which includes:

- default security information for all remote invocations, such as:
 - the authorization method, based on a gridmap file (in order to resolve user credentials to local user names)
• limited proxy credentials will be rejected

• security information for the createManagedJob operation

The file $GLOBUS_LOCATION/etc/gram-service/managed-job-security-config.xml contains the Core security configuration for the GRAM job resources:

• The default is to only allow the identity that called the createManagedJob operation to access the resource.

Note that, by default, two gridmap checks are done during an invocation of WS-GRAM:

1. One gridmap check is done by the container as configured by the gridmap element in $GLOBUS_LOCATION/etc/globus_wsrf_core/global_security_descriptor.xml

2. Another check is done by WS-GRAM when it calls the Perl modules which are used for job submission to the underlying local resource manager. This is configured by the authz element which is, by default, set to gridmap in $GLOBUS_LOCATION/etc/gram-service/managed-job-factory-security-config.xml and $GLOBUS_LOCATION/etc/gram-service/managed-job-security-config.xml. This check is done for additional security reasons to make sure that a potentially hacked globus user account still can only act on behalf of the users who are defined in a grid-mapfile.

The second gridmap check can be avoided by removing the authz element from both WS-GRAM security descriptors. This however does not mean, that no authorization check is done. The container still checks if the client is authorized as defined in $GLOBUS_LOCATION/etc/globus_wsrf_core/global_security_descriptor.xml but there's no further authorization check before calling the Perl modules. It's up to the GT4 container administrator to decide whether or not to have that additional authorization check. Note that a change in the sudo configuration is required in that case because globus-gridmap-and-execute will not be executed. /opt/globus/GT4.0.5 should be replaced with the GLOBUS_LOCATION for your installation:

Globus GRAM entries

globus ALL=(username1,username2)
NOPASSWD: /opt/globus/GT4.0.5/libexec/globus-job-manager-script.pl *
globus ALL=(username1,username2)
NOPASSWD: /opt/globus/GT4.0.5/libexec/globus-gram-local-proxy-tool *

Note

GRAM does not override the container security credentials defined in $GLOBUS_LOCATION/etc/globus_wsrf_core/global_security_descriptor.xml. These are the credentials used to authenticate all service requests.

2.7. GRAM and GridFTP file system mapping

The file $GLOBUS_LOCATION/etc/gram-service/globus_gram_fs_map_config.xml contains information to associate local resource managers with GridFTP servers. GRAM uses the GridFTP server (via RFT) to perform all file staging directives. Since the GridFTP server and the Globus service container can be run on separate hosts, a mapping is needed between the common file system paths of these two hosts. This enables the GRAM services to resolve file:/// staging directives to the local GridFTP URLs.

Below is the default Fork entry. Mapping a jobPath of / to an ftpPath of / will allow any file staging directive to be attempted.

<map>
For a `scheduler`, where jobs will typically run on a compute node, a default entry is not provided. This means staging directives will fail until a mapping is entered. Here is an example of a compute cluster with PBS installed that has two common mount points between the front end host and the GridFTP server host.

```
<map>
  <scheduler>PBS</scheduler>
  <ftpServer>
    <protocol>gsiftp</protocol>
    <host>myhost.org</host>
    <port>2811</port>
  </ftpServer>
  <mapping>
    <jobPath>/pvfs/mount1/users</jobPath>
    <ftpPath>/pvfs/mount2/users</ftpPath>
  </mapping>
  <mapping>
    <jobPath>/pvfs/jobhome</jobPath>
    <ftpPath>/pvfs/ftphome</ftpPath>
  </mapping>
</map>
```

The file system mapping schema doc is [here](http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_fs_map.html).

2.8. Scheduler-Specific Configuration Files

In addition to the service configuration described above, there are scheduler-specific configuration files for the Scheduler Event Generator modules. These files consist of name=value pairs separated by newlines. These files are:
Table 11.1. Scheduler-Specific Configuration Files

| Configuration for the Fork SEG module implementation. The attributes names for this file are: |
|---------------------------------|--|
| $GLOBUS_LOCATION/etc/globus-fork.conf | **log_path** Path to the SEG Fork log (used by the globus-fork-starter and the SEG). The value of this should be the path to a world-writable file. The default value for this created by the Fork setup package is $GLOBUS_LOCATION/var/globus-fork.log. This file must be readable by the account that the SEG is running as. |

| Configuration for the Condor SEG module implementation. The attributes names for this file are: |
|---------------------------------|--|
| $GLOBUS_LOCATION/etc/globus-condor.conf | **log_path** Path to the SEG Condor log (used by the Globus::GRAM::JobManager::condor perl module and Condor SEG module. The value of this should be the path to a world-readable and world-writable file. The default value for this created by the Fork setup package is $GLOBUS_LOCATION/var/globus-condor.log. |

| Configuration for the PBS SEG module implementation. The attributes names for this file are: |
|---------------------------------|--|
| $GLOBUS_LOCATION/etc/globus-pbs.conf | **log_path** Path to the SEG PBS logs (used by the Globus::GRAM::JobManager::pbs perl module and PBS SEG module. The value of this should be the path to the directory containing the server logs generated by PBS. For the SEG to operate, these files must have file permissions such that the files may be read by the user the SEG is running as. |

| Configuration for the LSF SEG module implementation. The attributes names for this file are: |
|---------------------------------|--|
| $GLOBUS_LOCATION/etc/globus-lsf.conf | **log_path** Path to the SEG LSF log directory. This is used by the LSF SEG module. The value of this should be the path to the directory containing the server logs generated by LSF. For the SEG to operate, these files must have file permissions such that the files may be read by the user the SEG is running as. |

2.9. Disabling an already installed scheduler adapter

When WS-GRAM is initialized during startup of the GT container the JNDI configuration is checked for configured scheduler adapters. If you want to disable an already installed scheduler adapter you have to make sure that it’s removed from the JNDI configuration. The following explains a way how this could be done:

Say, you installed support for PBS and want to disable PBS now. A listing of the WS-GRAM related directories in $GLOBUS_LOCATION/etc will look like this:

[martin@osg-test1 ~]$ cd $GLOBUS_LOCATION/etc && ls | grep gram-service
gram-service
gram-service-Fork
gram-service-Multi
gram-service-PBS
All you have to do is to remove gram-service-PBS, or better, create an archive before removing it in case you want to enable PBS support at a later time again. After doing that the output of the above command could look like this:

[martin@osg-test1 ~]$ cd $GLOBUS_LOCATION/etc && ls | grep gram-service
gram-service
gram-service-Fork
gram-service-Multi
gram-service-PBS.tar.gz

After restarting the GT server users won't be able to submit jobs to PBS anymore.

2.10. WS GRAM auto-registration with default WS MDS Index Service

With a default GT 4.0.1+ installation, the WS GRAM service is automatically registered with the default WS MDS Index Service\(^{17}\) running in the same container for monitoring and discovery purposes.

⚠ Note

If you are still using GT 4.0.0, we strongly recommend upgrading to the latest version\(^{18}\) to take advantage of this capability.

However, if must use GT 4.0.0, or if this registration was turned off and you want to turn it back on, this is how it is configured:

There is a JNDI resource defined in $GLOBUS_LOCATION/etc/gram-service/jndi-config.xml as follows:

```xml
<resource name="mdsConfiguration"
type="org.globus.wsrf.impl.servicegroup.client.MDSConfiguration">
  <resourceParams>
    <parameter>
      <name>reg</name>
      <value>true</value>
    </parameter>
    <parameter>
      <name>factory</name>
      <value>org.globus.wsrf.jndi.BeanFactory</value>
    </parameter>
  </resourceParams>
</resource>
```

To configure the automatic registration of WS GRAM to the default WS MDS Index Service, change the value of the parameter `<reg>` as follows:

- **true** turns on auto-registration; this is the default in GT 4.0.1+.
- **false** turns off auto-registration; this is the default in GT 4.0.0.

\(^{17}\) http://www.globus.org/toolkit/docs/4.0/info/index/

2.10.1. Configuring resource properties

By default, the GLUECE: resource property (which contains GLUE data) is sent to the default Index Service:

You can configure which resource properties are sent in WS GRAM's registration.xml file,

\$GLOBUS_LOCATION/etc/gram-service/registration.xml. The following is the relevant section of the file (as it is set by default):

```xml
<Content xsi:type="agg:AggregatorContent"
xmlns:agg="http://mds.globus.org/aggregator/types">
  <agg:AggregatorConfig xsi:type="agg:AggregatorConfig">
    <agg:GetResourcePropertyPollType
      xmlns:glue="http://mds.globus.org/glue/ce/1.1">
      <!-- Specifies that the index should refresh information
      every 60000 milliseconds (once per minute) -->
      <agg:PollIntervalMillis>60000</agg:PollIntervalMillis>
      <!-- specifies the resource property that should be
      aggregated, which in this case is the GLUE cluster
      and scheduler information RP -->
      <agg:ResourcePropertyName>glue:GLUECE</agg:ResourcePropertyName>
    </agg:GetResourcePropertyPollType>
  </agg:AggregatorConfig>
</Content>
```

2.11. Registering WS GRAM manually with default WS MDS Index Service via Third Party

If a third party needs to register an WS GRAM service manually, see _Registering with mds-servicegroup-add_ in the WS MDS Aggregator Framework documentation.

2.12. Job Description Document Substitution Variables (updates for 4.0.5+)

By default only four variables can be used in the job description document which are resolved to values in the service. These are

- GLOBUS_USER_HOME
- GLOBUS_USER_NAME
- GLOBUS_SCRATCH_DIR

19 http://www.globus.org/toolkit/docs/4.0/info/aggregator/re01.html#mds-servicegroup-add-registering
2.12.1. Changes in WS GRAM beginning with GT version 4.0.5

To enable communities to define their own system-wide variables and enable their users to use them in their job descriptions, a new generic variable/value config file was added where these variables can be defined. If a job description document contains one of these variables, that file will be used to resolve any matching variables.

A new service parameter in the JNDI container registry defines the path to the variable mapping file. The mapping is done for each scheduler. This file is checked periodically (you may configure the frequency) to see if it has changed. If so, it is reread and the new content replaces the old.

For example, the Fork scheduler has the following entries in $GLOBUS_LOCATION/etc/gram-service-Fork/jndi-config.xml which can be configured to determine the location and the refresh period of the variable mapping file:

```xml
<parameter>
    <name>substitutionDefinitionsFile</name>
    <value>/root/vdt-stuff/globus/etc/gram-service-Condor/substitution definition.properties</value>
</parameter>
<parameter>
    <name>substitutionDefinitionsRefreshPeriod</name>
    <value>480</value>
</parameter>
```

!!! Important

If you use variables in the job description document that are not defined in the variable mapping file, the following error occurs during job submission: 'No value found for RSL substitution variable <variableName>,'

2.13. Configuring and submitting jobs to WS-GRAM using Condor-G

Condor-G provides command-line tools to run large job submissions to WS-GRAM, to monitor and to destroy them. The following link gives a good introduction on how to configure Condor-G and how to submit jobs to WS-GRAM:

https://bi.ofitis.de/wisent/tiki-index.php?page=Condor-GT4

20 https://bi.ofitis.de/wisent/tiki-index.php?page=Condor-GT4
3. Configuring New Features for 4.0.5+

3.1. Audit Logging (4.0.5+ only)

You can find information about Audit Logging in WS GRAM Audit Logging section (available only with GT versions 4.0.5+).

3.2. SoftEnv Support (4.0.5+ only)

You can find information about SoftEnv support in WS GRAM SoftEnv Support section (available only with GT versions 4.0.5+).

3.3. Job Description Extensions Support (4.0.5+, update pkg available)

You can find information about Job Description Extensions Support in WS GRAM Job Description Extensions Support section (available with GT versions 4.0.5+, update package available for previous versions).

3.4. Local RFT Invocations (4.0.5+ only)

A new option has been added to WS GRAM to make "local" invocations to RFT instead of Web Service calls. This has shown to improve performance for the WS GRAM service when calling RFT for all file staging and cleanup directives. The default configuration for WS GRAM remains using Web Service calls to RFT.

To configure local method calls from GRAM to RFT, make the following configuration change to $GLOBUS_LOCATION/etc/gram-service/jndi-config.xml:

```xml
<parameter>
  <name>enableLocalInvocations</name>
  <value>true</value>
</parameter>
```

More can be read about local invocations here.

4. Deploying

WS GRAM is deployed as part of a standard toolkit installation. Please refer to the GT 4.0 System Administrator's Guide for details.

21 http://www.globus.org/toolkit/docs/4.0/execution/wsgram/WS_GRAM_Audit_Logging.html
22 http://www.globus.org/toolkit/docs/4.0/execution/wsgram/WS_GRAM_SoftEnv_Support.html
23 http://www.globus.org/toolkit/docs/4.0/execution/wsgram/WS_GRAM_Job_Desc_Extensions.html
24 http://www.globus.org/toolkit/docs/4.0/execution/wsgram/LocalInvocations.doc
25 http://www.globus.org/toolkit/docs/4.0/admin/docbook/
4.1. Deploying in Tomcat

WS GRAM has been tested to work without any additional setup steps when deployed into Tomcat. Please see the Java WS Core admin guide section on deploying GT4 services into Tomcat\(^\text{26}\) for instructions. Also, for details on tested containers, see the WS GRAM release notes\(^\text{27}\).

* Note *

Currently only a single deployment is supported because of a limitation in the execution of the Scheduler Event Generator. One must set GLOBUS_LOCATION before starting Tomcat.

5. Testing

See the WS GRAM User's Guide\(^\text{28}\) for information about submitting a test job.

6. Security Considerations

No special security considerations exist at this time.

7. Troubleshooting

When I submit a streaming or staging job, I get the following error: \texttt{ERROR service.TransferWork Terminal transfer error: [Caused by: Authentication failed](Caused by: Operation unauthorized(Mechanism level: Authorization failed. Expected"/CN=host/localhost.localdomain" target but received "/O=Grid/OU=GlobusTest/OU=simpleCA-my-ma-\texttt{chine.com/CN=host/my.machine.com")}

- Check \$GLOBUS_LOCATION/etc/gram-service/globus_gram_fs_map_config.xml to see if it uses localhost or 127.0.0.1 instead of the public hostname (in the example above, my.machine.com). Change these uses of the loopback hostname or IP to the public hostname as necessary.

\textit{Fork jobs work fine, but submitting PBS jobs with globusrun-ws hangs at "Current job state: Unsubmitted"}

1. Make sure the log_path in \$GLOBUS_LOCATION/etc/globus-pbs.conf points to locally accessible scheduler logs that are readable by the user running the container. The Scheduler Event Generator (SEG) will not work without local scheduler logs to monitor. This can also apply to other resource managers, but is most comonly seen with PBS.

2. If the SEG configuration looks sane, try running the SEG tests. They are located in \$GLOBUS_LOCATION/test/globus_scheduler_event_generator_*_test/. If Fork jobs work, you only need to run the PBS test. Run each test by going to the associated directory and run ./TESTS.pl. If any tests fail, report this to the gram-dev@globus.org\(^\text{29}\) mailing list.

3. If the SEG tests succeed, the next step is to figure out the ID assigned by PBS to the queued job. Enable GRAM debug logging by uncommenting the appropriate line in the \$GLOBUS_LOCATION/container-log4j.properties configuration file. Restart the container, run a PBS job, and search the container log for a line that contains "Received local job ID" to obtain the local job ID.

\(^{26}\) http://www.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html#javawscore-admin-tomcat-deploying
\(^{27}\) WS_GRAM_Release_Notes.html#wsgram-Release_Notes-testedplatforms
\(^{28}\) http://www.globus.org/toolkit/docs/4.0/execution/wsgram/user-index.html#wsgram-user-usagescenarios
\(^{29}\) http://dev.globus.org/wiki/GRAM#Mailing_Lists

95
4. Once you have the local job ID, you can find out if the PBS status is being logged by checking the latest PBS logs pointed to by the value of "log_path" in

\$/GLOBUS_LOCATION/etc/globus-pbs.conf.

If the status is not being logged, check the documentation for your flavor of PBS to see if there's any further configuration that needs to be done to enable job status logging. For example, PBS Pro requires a sufficient `-e <bitmask>` option added to the `pbs_server` command line to enable enough logging to satisfy the SEG.

5. If the correct status is being logged, try running the SEG manually to see if it is reading the log file properly. The general form of the SEG command line is as follows:

\[\text{\$GLOBUS_LOCATION/libexec/globus-scheduler-event-generator -s pbs -t <timestamp>} \]

The timestamp is in seconds since the epoch and dictates how far back in the log history the SEG should scan for job status events. The command should hang after dumping some status data to stdout.

If no data appears, change the timestamp to an earlier time.

If nothing ever appears, report this to the `gram-user@globus.org` mailing list.

6. If running the SEG manually succeeds, try running another job and make sure the job process actually finishes and PBS has logged the correct status before giving up and cancelling `globusrun-ws`. If things are still not working, report your problem and exactly what you have tried to remedy the situation to the `gram-user@globus.org` mailing list.

The job manager detected an invalid script response

- Check for a restrictive umask. When the service writes the native scheduler `job description` to a file, an overly restrictive umask will cause the permissions on the file to be such that the submission script run through `sudo` as the user cannot read the file (bug #2655).

When restarting the container, I get the following error: Error getting delegation resource

- Most likely this is simply a case of the delegated credential expiring. Either refresh it for the affected job or destroy the job resource. For more information, see delegation command-line clients.

The user's home directory has not been determined correctly

- This occurs when the administrator changed the location of the users' home directory and did not restart the GT4 container afterwards. Beginning with version 4.0.3, WS-GRAM determines a user's home directory only once in the lifetime of a container (when the user submits the first job). Subsequently, submitted jobs will use the cached home directory during job execution.

8. Usage statistics collection by the Globus Alliance

The following usage statistics are sent by default in a UDP packet (in addition to the GRAM component code, packet version, timestamp, and source IP address) at the end of each job (i.e. when Done or Failed state is entered).
• job creation timestamp (helps determine the rate at which jobs are submitted)

• scheduler type (Fork, PBS, LSF, Condor, etc...)

• jobCredentialEndpoint present in RSL flag (to determine if server-side user proxies are being used)

• fileStageIn present in RSL flag (to determine if the staging in of files is used)

• fileStageOut present in RSL flag (to determine if the staging out of files is used)

• fileCleanUp present in RSL flag (to determine if the cleaning up of files is used)

• CleanUp-Hold requested flag (to determine if streaming is being used)

• job type (Single, Multiple, MPI, or Condor)

• gt2 error code if job failed (to determine common scheduler script errors users experience)

• fault class name if job failed (to determine general classes of common faults users experience)

If you wish to disable this feature, please see the Java WS Core System Administrator's Guide section on Usage Statistics Configuration34 for instructions.

Also, please see our policy statement35 on the collection of usage statistics.

34http://www.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html#s-javawscore-Interface_Config_Frag-usageStatisticsTargets

35http://www.globus.org/toolkit/docs/4.0/Usage_Stats.html
Chapter 12. GSI-OpenSSH Admin Guide

1. Building and Installing

GSI-OpenSSH is built and installed as part of a default GT 4.0 installation. For basic installation instructions, see the GT 4.0 System Administrator's Guide\(^1\). No extra installation steps are required for this component.

1.1. Optional Build-Time Configuration

You can optionally pass build-time configure options to the GSI-OpenSSH package using the \(--\text{with-gsiopensshargs}\) option when running configure for your GT 4.0 installation. For example:

```
./configure --prefix=$HOME/globus
    --with-gsiopensshargs="--with-pam"
```

No options are typically needed for client-only installations, but options are often needed for full server functionality. The following table lists suggested options for different platforms.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>--with-pam --with-md5-passwords --with-tcp-wrappers</td>
</tr>
<tr>
<td>Solaris</td>
<td>--with-pam --with-md5-passwords --with-tcp-wrappers</td>
</tr>
<tr>
<td>Irix</td>
<td>--with-tcp-wrappers</td>
</tr>
<tr>
<td>AIX</td>
<td>--with-tcp-wrappers</td>
</tr>
</tbody>
</table>

Note: If you enable PAM support with the \(--\text{with-pam}\) configuration option, be sure to also set "UsePAM yes" in $GLOBUS_LOCATION/etc/ssh/sshd_config after installation.

If you have an already configured and installed system-wide SHHD and you would like your build of GSI-OpenSSH to behave similarly, investigate the configure options available in GSI-OpenSSH and select those options that would add the functionality that your current SSHD possesses. Be aware that since GSI-OpenSSH is based on OpenSSH, the standard set of functionality is turned on by default.

Please do not attempt to override the following options:

```
--prefix
--sysconfdir
--with-globus
--with-globus-flavor
--with-ssl-dir
```

\(^1\) http://www.globus.org/toolkit/docs/4.0/admin/docbook/
1.2. Building and Installing only GSI-OpenSSH

If you wish to install GSI-OpenSSH without installing the rest of the Globus Toolkit, follow the instructions in the GT 4.0 System Administrator's Guide with the following changes. First, you do not need Ant, a JDK, or a JDBC database to build only GSI-OpenSSH. Second, instead of running "make", run:

```
globus$ make gsi-openssh
```

This will install the GSI-OpenSSH client and server programs. For client-only installations, simply do not configure or use the installed server.

2. Configuring

The GSI-enabled OpenSSH software is installed with a default set of configuration files, described below. You may want to modify the `ssh_config` file before using the clients and the `sshd_config` file before using the server.

If the GSI-enabled OpenSSH install script finds existing SSH key pairs, it will create symbolic links to them rather than generating new key pairs. The SSH key pairs are not required for GSI authentication. However, if you wish to support other SSH authentication methods, make sure the sshd (running as root) can read the key pair files (i.e., beware of NFS mounts with root_squash). If running multiple sshds on a system, we recommend configuring them so they all use the same key pairs (i.e., use symbolic links) to avoid client-side confusion.

- `$GLOBUS_LOCATION/etc/ssh/moduli`

 moduli is a crypto parameter for generating keys.

- `$GLOBUS_LOCATION/etc/ssh/ssh_config`

 `ssh_config` contains options that are read by ssh, scp, and sftp at run-time. The installed version is the default provided by OpenSSH, with X11Forwarding enabled. You may need to customize this file for compatibility with your system SSH installation (i.e., compare it with `/etc/ssh/ssh_config`).

- `$GLOBUS_LOCATION/etc/ssh/ssh_host_key[.pub]`

 Your system's RSA public/private-key pair for SSH protocol 1 communications.

- `$GLOBUS_LOCATION/etc/ssh/ssh_host_dsa[.pub]`

 Your system's DSA public/private-key pair for SSH protocol 2 communications.

- `$GLOBUS_LOCATION/etc/ssh/ssh_host_rsa[.pub]`

 Your system's RSA public/private-key pair for SSH protocol 2 communications.

- `$GLOBUS_LOCATION/etc/ssh/ssh_prng_cmds`

 `ssh_prng_cmds` contains paths to a number of files that ssh-keygen may need to use if your system does not have a built-in entropy pool (like /dev/random).

2 http://www.globus.org/toolkit/docs/4.0/admin/docbook/
• `$GLOBUS_LOCATION/etc/ssh/sshd_config`

`sshd_config` contains options that are read by `sshd` when it starts up. The installed version is the default provided by OpenSSH, with X11Forwarding enabled. You may need to customize this file for compatibility with your system SSH installation (i.e., compare it with `/etc/ssh/sshd_config`). For example, to enable PAM authentication, you will need to set "UsePAM yes" in this file.

3. Deploying

1. To install the GSI-Enabled OpenSSH Server on most systems, you must be a privileged user, such as root.

   ```
   sh$ /bin/su - root
   ```

 Note: If your system functions like this and you attempt to run these commands as a user other than root, these commands should fail.

2. (optional) Start a copy of your system's currently running SSH server on an alternate port by running, eg.

   ```
   sh# /usr/sbin/sshd -p 2000 &
   ```

 You may then choose to log in to this server and continue the rest of these steps from that shell. We recommend doing this since some sshd shutdown scripts do particularly nasty things like killing all of the running SSH servers on a system, not just the parent server that may be listening on port 22. Roughly translated, this step is about guaranteeing that an alternate method of access is available should the main SSH server be shutdown and your connection via that server be terminated.

3. Locate your server's startup/shutdown script directory. On some systems this directory may be located at `/etc/rc.d/init.d`, but since this location is not constant across operating systems, for the purposes of this document we will refer to this directory as `INITDIR`. Consult your operating system's documentation for your system's location.

4. Run the following command.

   ```
   sh# mv $INITDIR/sshd $INITDIR/sshd.bak
   ```

5. Either copy or link the new `sshd` script to your system's startup/shutdown script directory.

   ```
   sh# cp $GLOBUS_LOCATION/sbin/SXXsshd $INITDIR/sshd
   ```

6. Shutdown the currently running main SSH server.

   ```
   sh# $INITDIR/sshd.bak stop
   ```

7. Provided you still have a connection to the machine, start the new SSH server.

   ```
   sh# $INITDIR/sshd start
   ```
8. Test the new server by connecting to the standard SSH port (22) and authenticating via multiple methods. Especially test that GSI authentication works correctly.

9. If you are performing a new install, or if the old server was not configured to be started at run-time and shutdown automatically at system halt or reboot, either use a system utility such as RedHat's chkconfig to configure the system for the correct run-levels, or manually link up the correct run-levels.

```sh
sh# /sbin/chkconfig sshd reset
```

The recommended run-levels are listed in a set of comments within the SXXsshd startup script. For example, on standard Unix systems we recommend running the GSI-Enabled OpenSSH server in run-levels two, three, four, and five.

10. Finally, if, as a precautionary measure, you started a SSH server on an alternate port in order to complete the install process, you can now safely stop all instances of that server.

4. Testing

1. Edit the file $GLOBUS_LOCATION/sbin/SXXsshd so that the GSI-Enabled OpenSSH server starts up on an alternate port.

2. Run the command

```sh
sh# $GLOBUS_LOCATION/sbin/SXXsshd start
```

and verify that the server is running by checking that it both shows up in a process listing and creates a file named $GLOBUS_LOCATION/var/sshd.pid.

3. From a remote machine attempt to connect to the local server on the modified test port using the standard SSH authentication methods plus authenticating via your GSI credentials. This may require you to authorize these users via an appropriate entry in the grid-mapfile.

4. Stop the SSH server by running the command

```sh
sh# $GLOBUS_LOCATION/sbin/SXXsshd stop
```

and reverse any changes you made that altered the port on which the server resided upon startup. After this step, running SXXsshd start should start the server on the default port (22).

5. Security Considerations

GSI-OpenSSH is a modified version of OpenSSH\(^3\) and includes full OpenSSH functionality. For more information on OpenSSH security, see the OpenSSH Security\(^4\) page.

\(^3\) http://www.openssh.org/

\(^4\) http://www.openssh.org/security.html
6. Troubleshooting

GSI authentication is very sensitive to clock skew. You must run a system clock synchronization service of some type on your system to prevent authentication problems caused by incorrect system clocks. We recommend NTP\(^5\). Please refer to your operating system documentation or the NTP Home Page\(^6\) for installation instructions. Please also ensure your system timezone is set correctly.

\(^5\) http://www.ntp.org/
\(^6\) http://www.ntp.org/
Chapter 13. MyProxy Admin Guide

1. Building and Installing

MyProxy is built and installed as part of a default GT 4.0 installation. For basic installation instructions, see the GT 4.0 System Administrator’s Guide\(^1\). No extra installation steps are required for this component.

1.1. Building and Installing only MyProxy

If you wish to install MyProxy without installing the rest of the Globus Toolkit, follow the instructions in the GT 4.0 System Administrator’s Guide\(^2\) with the following changes:

1. First, you do not need Ant, a JDK, or a JDBC database to build only MyProxy.
2. Second, instead of running "make", run:

   ```
   globus$ make gsi-myproxy
   
   then:
   
   globus$ make install
   ```

This will install the MyProxy client and server programs. For client-only installations, simply do not configure or use the installed server.

2. Configuring

A typical MyProxy configuration has one dedicated myproxy-server for the site, with MyProxy clients installed on all systems where other Globus Toolkit client software is installed.

No additional configuration is required to use MyProxy clients after they are installed, although you may want to set the MYPROXY_SERVER environment variable to the hostname of your myproxy-server in the default user environment on your systems.

To configure the myproxy-server you must modify the myproxy-server.config template provided at $GLOBUS_LOCATION/share/myproxy/myproxy-server.config and copy it to /etc/myproxy-server.config (if you have root access) or $GLOBUS_LOCATION//etc/myproxy-server.config (if you don't have root access). *If you skip this step, your myproxy-server will not start.* To enable all myproxy-server features uncomment the provided sample policy at the top of the myproxy-server.config config file, as follows:

```
# # Complete Sample Policy
#
# The following lines define a sample policy that enables all
# myproxy-server features. See below for more examples.
accepted_credentials       "*"
authorized_retrievers      "*"
```

\(^1\) http://www.globus.org/toolkit/docs/4.0/admin/docbook/

\(^2\) http://www.globus.org/toolkit/docs/4.0/admin/docbook/
The myproxy-server.config file sets the policy for the myproxy-server(8), specifying what credentials may be stored in the server's repository and who is authorized to retrieve credentials. By default, the myproxy-server(8) looks for this file in /etc/myproxy-server.config and if it is not found there, it looks in $GLOBUS_LOCATION/etc/myproxy-server.config. The myproxy-server -c option can be used to specify an alternative location. The file installed by default does not allow any requests.

The file also supports a passphrase_policy_program command for specifying an external program for evaluating the quality of users' passphrases. A sample program is installed in $GLOBUS_LOCATION/share/myproxy/myproxy-passphrase-policy but is not enabled by default.

Lines in the configuration file use limited regular expressions for matching the distinguished names (DNs) of classes of users. The limited regular expressions support the shell-style characters '*' and '?', where '*' matches any number of characters and '?' matches any single character.

The DN limited regexes should be delimited with double quotes ("DN regex").

The configuration file has the following types of lines:

default_retrievers "*"
authorized_renewers "*"
default_renewers "none"
authorized_key_retrievers "*"
default_key_retrievers "none"
trusted_retrievers "*"
default_trusted_retrievers "none"

Please see below for additional documentation on the myproxy-server.config options.
Table 13.1. myproxy-server.config lines

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accepted_credentials "DNregex"</td>
<td>Each of these lines allows any clients whose DNs match the given limited regex to connect to the myproxy-server and store credentials with it for future retrieval. Any number of these lines may appear. For backwards compatibility, these lines can also start with allowedClients instead of accepted_credentials.</td>
</tr>
<tr>
<td>authorized_retrievers "DN regex"</td>
<td>Each of these lines allows the server administrator to set server-wide policies for authorized retrievers. If the client DN does not match the given limited regex, the client is not allowed to retrieve the credentials previously stored by a client. In addition to the server-wide policy, MyProxy also provides support for per-credential policy. The user can specify the regex DN of the allowed retrievers of the credential when uploading the credential (using <code>myproxy-init(1)</code>). The retrieval client DN must also match the user specified regex. In order to retrieve credentials the client also needs to know the name and pass phrase provided by the client when the credentials were stored. Any number of these lines may appear. For backwards compatibility, these lines can also start with allowed_services instead of authorized_retrievers.</td>
</tr>
<tr>
<td>default_retrievers "DN regex"</td>
<td>Each of these lines allows the server administrator to set server-wide default policies. The regex specifies the clients who can access the credentials. The default retriever policy is enforced if a per-credential policy is not specified on upload (using <code>myproxy-init(1)</code>). In other words, the client can override this policy for a credential on upload. The per-credential policy is enforced in addition to the server-wide policy specified by the authorized_retrievers line (which clients can not override). Any number of these lines may be present. For backwards compatibility, if no default_retrievers line is specified, the default policy is "*", which allows any client to pass the per-credential policy check. (The client must still pass the authorized_retrievers check).</td>
</tr>
<tr>
<td>authorized_renewers "DN regex"</td>
<td>Each of these lines allows the server administrator to set server-wide policies for authorized renewalers. If the client DN does not match the given limited regex the client is not allowed to renew the credentials previously stored by a client. In addition to the server-wide policy, MyProxy also provides support for per-credential policy. The user can specify the regex DN of the allowed renewalers of the credential when uploading the credential (using <code>myproxy-init(1)</code>). The renewal client DN must match both this regex and the user specified regex. In this case, the client must also already have a credential with a DN matching the DN of the credentials to be retrieved, to be used in a second authorization step (see the -a option for <code>myproxy-logon(1)</code>).</td>
</tr>
<tr>
<td>default_renewers "DN regex"</td>
<td>Each of these lines allows the server administrator to set server-wide default renewer policies. The regex specifies the clients who can renew the credentials. The default renewer policy is enforced if a per-credential policy is not specified on upload (using <code>myproxy-init(1)</code>). This is enforced in addition to the server-wide policy specified by the authorized_renewers line. Any number of these lines may appear. For backwards compatibility, if no default_renewers line is specified, the default policy is "*", which allows any client to pass the per-credential policy check. (The client must still pass the authorized_renewers check).</td>
</tr>
<tr>
<td>passphrase_policy_program full-path-to-script</td>
<td>This line specifies a program to run whenever a passphrase is set or changed for implementing a local password policy. The program is passed the new passphrase via stdin and is passed the following arguments: username, distinguished name, credential name (if any), per-credential retriever policy (if any), and per-credential renewal policy (if any). If the passphrase is acceptable, the program should exit with status 0. Otherwise, it should exit with non-zero status, causing the operation in progress (credential load, passphrase change) to fail with the error message provided by the program’s stdout. Note: You must specify the full path to the external program. $GLOBUS_LOCATION can't be used in the myproxy-server.config file.</td>
</tr>
</tbody>
</table>
This line specifies a server-wide maximum lifetime for retrieved proxy credentials. By default, no server-wide maximum is enforced. However, if this option is specified, the server will limit the lifetime of any retrieved proxy credentials to the value given.

3. Deploying

A sample SysV-style boot script for MyProxy is installed at `$GLOBUS_LOCATION/share/myproxy/etc.init.d.myproxy`. To install on Linux, copy the file to `/etc/rc.d/init.d/myproxy` and run `chkconfig --add myproxy`. You will need to edit the file to set the `GLOBUS_LOCATION` environment variable correctly.

Alternatively, to run the myproxy server out of inetd or xinetd, you need to do the following as root:

- Add the entries in `$GLOBUS_LOCATION/share/myproxy/etc.services.modifications` to the `/etc/services` or `/etc/inet/services` file.

- Add the entries in `$GLOBUS_LOCATION/share/myproxy/etc.inetd.conf.modifications` to `/etc/inetd.conf` or copy `$GLOBUS_LOCATION/share/myproxy/etc.inetd.myproxy` to `/etc/xinetd.d/myproxy`. You'll need to modify the paths in the file according to your installation.

- Reactivate the inetd (or xinetd). This is typically accomplished by sending the SIGHUP signal to the daemon. Refer to the inetd or xinetd man page for your system.

4. Testing

To verify your myproxy-server installation and configuration, you can run the myproxy-server directly from your shell. If using a host certificate, you will need to run the myproxy-server as root. First, make sure your Globus environment is setup in your shell. Set the `GLOBUS_LOCATION` environment variable to the location of your MyProxy installation. Then, depending on your shell, run one of the following commands.

For csh shells:

```
source $GLOBUS_LOCATION/etc/globus-user-env.csh
```

For sh shells:

```
. $GLOBUS_LOCATION/etc/globus-user-env.sh
```

Then, run `$GLOBUS_LOCATION/sbin/myproxy-server -d`. The `−d` argument runs the myproxy-server in debug mode. It will write debugging messages to the terminal and exit after servicing a single request. You'll need to start it once for each test request. In another shell, you can run the MyProxy client programs to test the server.

If run without the `−d` argument, the myproxy-server program will start up and background itself. It accepts connections on TCP port 7512, forking off a separate child to handle each incoming connection. It logs information via the syslog service under the daemon facility.

5. Security Considerations

You should choose a well-protected host to run the myproxy-server on. Consult with security-aware personnel at your site. You want a host that is secured to the level of a Kerberos KDC, that has limited user access, runs limited services, and is well monitored and maintained in terms of security patches.
For a typical myproxy-server installation, the host on which the myproxy-server is running must have /etc/grid-security created and a host certificate installed. In this case, the myproxy-server will run as root so it can access the host certificate and key.

6. Troubleshooting

Please refer to the MyProxy user manual\(^3\).

\(^3\) ../security/myproxy/user-index.html#s-myproxy-user-troubleshooting
Chapter 14. CAS Admin Guide

1. Building and Installing

The CAS server and client are built and installed as part of a default GT 4.0 installation. For basic installation instructions, refer to the GT 4.0 System Administrator's Guide. No extra installation steps are required for this component.

The CAS client can be installed by itself. Please refer to Packaging details.

2. Configuring

Note

Typically a single CAS server is run per VO and multiple client installations are done. This document contains information about deploying a CAS server and is not needed for a CAS client installation. Please refer to the documentation for CAS client install.

2.1. Configuration overview

The CAS service can be configured with a description of the VO the CAS service serves and the maximum lifetime of the assertions it can issue. Also, the service needs to be configured with information about the back end database it uses. Any database with a JDBC driver and reasonable SQL support can be used. That said, PostgreSQL was used for development and testing and we strongly recommend that you use it. The CAS database schema to be used with PostgreSQL has been provided in $GLOBUS_LOCATION/etc/globus_cas_service/casDbSchema/cas_pgsql_database_schema.sql.

Other than that, the security settings of the service can be modified in the security descriptor associated with the CAS service. It allows for configuring the credentials that will be used by the service, the type of authentication and message protection required as well as the authorization mechanism. By default, the following security configuration is installed:

- Credentials are determined by the container level security descriptor. If there is no container level security descriptor or if it does not specify which credentials to use then default credentials are used.
- Authentication and message integrity protection is enforced for all methods except queryResourceProperties and getResourceProperty. This means that you may use any of GSI Transport, GSI Secure Message or GSI Secure Conversation when interacting with the CAS service.
- The standard authorization framework is not used for authorization. Instead the the service uses the back end database to determine if the call is permitted.

Note

Changing required authentication and authorization methods will require matching changes to the clients that contact this service.

1 http://www.globus.org/toolkit/docs/4.0/admin/docbook/
2 http://www.globus.org/toolkit/docs/4.0/admin/docbook/apb.html
Important

If the service is configured to use GSI Secure Transport, then container credentials are used for the handshake, irrespective of whether service level credentials are specified.

2.2. Loading the CAS service at start up

By default, the CAS service is not loaded at start up. To change this behavior, uncomment the `loadOnStartup` property set in `$GLOBUS_LOCATION/etc/globus_cas_service/server-config.wsdd` as shown below.

Once the `loadOnStartup` property is uncommented, the following happens at start up:

1. The CAS service is loaded.
2. The database connection pool is initialized.
3. The service registers itself to the default MDS Index Service.

```xml
<service name="CASService" provider="Handler" use="literal"
    style="document">
    <parameter name="loadOnStartup" value="true"/>
    <parameter name="allowedMethodsClass" value="org.globus.cas.CASPortType"/>
    ...
</service>
```

2.3. Changing the maximum assertion lifetime

To change the maximum assertion lifetime and VO description, set the parameters `maxAssertionLifetime` and `voDescription` in `$GLOBUS_LOCATION/etc/globus_cas_service/jndi-config.xml` to the desired values.

2.4. Configuring database backend

To alter the configuration of the database back end edit the `databaseConfiguration` section of `$GLOBUS_LOCATION/etc/globus_cas_service/jndi-config.xml` as follows:
Table 14.1. Database parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>driver</td>
<td>The JDBC driver to be used</td>
</tr>
<tr>
<td>connectionURL</td>
<td>The JDBC connection url to be used when connecting to the database</td>
</tr>
<tr>
<td>userName</td>
<td>The user name to connect to the database as</td>
</tr>
<tr>
<td>password</td>
<td>The corresponding database password</td>
</tr>
<tr>
<td>activeConnections</td>
<td>The maximum number of active connections at any given instance</td>
</tr>
<tr>
<td>onExhaustAction</td>
<td>The action to perform when the connection pool is exhausted. If value is 0</td>
</tr>
<tr>
<td>maxWait</td>
<td>The maximum time in milliseconds that the pool will wait for a connection</td>
</tr>
<tr>
<td>idleConnections</td>
<td>The maximum number of idle connections at any given time</td>
</tr>
</tbody>
</table>

2.5. Configuring security descriptor

To alter the security descriptor configuration refer to Security Descriptors. The file to be changed is $GLOBUS_LOCATION/etc/globus_cas_service/security-config.xml.

2.6. Configuring with a GridFTP Server

CAS is used to administer access rights to files and directories and the GridFTP server can be configured to enforce those rights.

For detailed information about configuring CAS for use with a GridFTP server, see [link](http://www.globus.org/toolkit/docs/4.0/security/cas/WS_AA_CAS_HOWTO_Setup_GridFTP.html).

2.7. CAS auto-registration with default WS MDS Index Service

With a default GT 4.0.1 installation, CAS is automatically registered with the default WS MDS Index Service running in the same container for monitoring and discovery purposes.

⚠️ Note

If you are using GT 4.0.0, we strongly recommend upgrading to 4.0.1 to take advantage of this capability.

However, if must use GT 4.0.0, or if this registration was turned off and you want to turn it back on, this is how it is configured:

There is a jndi resource defined in $GLOBUS_LOCATION/etc/globus_cas_service/jndi-config.xml as follows:

```xml
<resource name="mdsConfiguration"
    type="org.globus.wsrf.impl.servicegroup.client.MDSConfiguration">
    <resourceParams>
        <!-- Configure MDS Configuration resource here -->
    </resourceParams>
</resource>
```

4. http://www.globus.org/toolkit/docs/4.0/info/index/
To configure the automatic registration of CAS to the default WS MDS Index Service, change the value of the parameter <reg> as follows:

- true turns on auto-registration; this is the default in GT 4.0.1.
- false turns off auto-registration; this is the default in GT 4.0.0.

2.7.1. Configuring resource properties

By default, the VoDescription resource property (which describes the virtual organization relevant to the CAS Service) is sent to the default Index Service.

You can configure which resource properties are sent in the registration.xml file, $GLOBUS_LOCATION/etc/globus_cas_service/registration.xml. The following is the relevant section of the file:

```xml
<Content xsi:type="agg:AggregatorContent"
xmlns:agg="http://mds.globus.org/aggregator/types">

<agg:AggregatorConfig xsi:type="agg:AggregatorConfig">
<agg:GetResourcePropertyPollType
xmlns:cas="http://www.globus.org/07/2004/cas">
<!-- Specifies that the index should refresh information every 8 hours (28800000ms) -->
<agg:PollIntervalMillis>28800000</agg:PollIntervalMillis>

<!-- specifies that all Resource Properties should be collected from the RFT factory -->
<agg:ResourcePropertyName>cas:VoDescription</agg:ResourcePropertyName>

</agg:GetResourcePropertyPollType>
</agg:AggregatorConfig>
<agg:AggregatorData/>
</Content>
```
2.8. Registering CAS manually with default WS MDS Index Service

If a third party needs to register an CAS service manually, see Registering with mds-servicegroup-add\(^5\) in the WS MDS Aggregator Framework documentation.

3. Deploying

The CAS service is deployed as a part of a standard toolkit installation. Please refer to the System Administrator’s Guide\(^6\) for details. Other than the steps described in the above guide, the following are needed to deploy the CAS service.

3.1. Obtaining credentials for the CAS service

The CAS service can run with its own service specific credentials. Instructions for obtaining service credentials may be found here\(^7\).

The standard administrator clients that come with the distribution by default use identity authorization to authorize the service they are running against (and expect that the CAS service has credentials that have the FQDN of the host the server is running on and the service name "cas" as part of DN). Command line options can be used to specify the identity of the CAS service, if the default identity is not used. The command in the above mentioned web page\(^8\) may be altered as follows to get credentials for the CAS server:

```
casadmin$ grid-cert-request -service cas -host FQDN
```

The certificate and private key are typically placed in /etc/grid-security/cas-cert.pem and /etc/grid-security/cas-key.pem, respectively. In this document the locations of certificate and key files are referred to as CAS_CERT_FILE and CAS_KEY_FILE, respectively.

If message level security is used, that is http protocol is used, the subject name in these credentials is expected by CAS clients by default. If https is used, the container credentials are used for securing the socket and hence the container credentials are expected by the client.

3.2. Database installation and configuration

CAS uses a back end database to store all user data. This section briefly describes the installation of such a database and the creation of the database using the schema required by the CAS back end.

3.2.1. Installing the database

While any database with a JDBC driver and support for a reasonable set of SQL may be used, PostgreSQL has been used for development and testing. The driver for the same is included in the distribution. If a different database is used, the corresponding driver should be added to $GLOBUS_LOCATION/lib.

Brief instructions on how to install a database (specifically PostgreSQL) can be found here\(^9\). For more detailed instructions, please refer to documentation for the database you are installing.

\(^5\) http://www.globus.org/toolkit/docs/4.0/info/aggregator/re01.html#mds-servicegroup-add-registering
\(^6\) http://www.globus.org/toolkit/docs/4.0/admin/docbook/
\(^7\) http://www.globus.org/toolkit/docs/2.4/admin/guide-verify.html#ldapcert
\(^8\) http://www.globus.org/toolkit/docs/2.4/admin/guide-verify.html#ldapcert
\(^9\) http://www.globus.org/toolkit/3.0/ogsa/docs/admin/installation.html
3.2.2. Creating the CAS database

The schema for the database that needs to be created for CAS can be found at $GLOBUS_LOCATION/etc/globus_cas_service/casDbSchema/cas_pgsql_database_schema.sql

To create a database, for example casDatabase, on a PostgreSQL installation on a local machine run the following commands:

```
casadmin$ createdb casDatabase

//...to run in another terminal window...

bash$ casadmin$ psql -U casadmin -d casDatabase -f 
$GLOBUS_LOCATION/etc/globus_cas_service/casDbSchema/cas_pgsql_database_schema.sql
```

You will see a list of notices on the screen. Unless any of them say "ERROR", these are just informational output.

3.2.3. Bootstrapping the CAS database

The CAS database needs to be initialized with data specific to CAS and information about a super user to allow bootstrapping of CAS operations. The command line script `cas-server-bootstrap` can be used to achieve this.

```
cas-server-bootstrap [<options>] -d <dbPropFile> [ -implicit | -b <bootstrapFile> ]
```

Table 14.2. Command line options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help</td>
<td>Prints the help message.</td>
</tr>
<tr>
<td>-debug</td>
<td>Runs the script with debug trace.</td>
</tr>
<tr>
<td>-d dbProperties-File</td>
<td>File name with database properties as follows:</td>
</tr>
<tr>
<td></td>
<td>dbDriver=database driver name</td>
</tr>
<tr>
<td></td>
<td>dbConnectionURL=database connection URL</td>
</tr>
<tr>
<td></td>
<td>dbUsername=Username to access database</td>
</tr>
<tr>
<td></td>
<td>dbPassword=Password for the above username</td>
</tr>
<tr>
<td>-b bootstrapFile</td>
<td>This option populates the database with super user data and points to a file with data to use for bootstrapping the database with a trust anchor and user configuration. A template file for this can be found at $GLOBUS_LOCATION/share/globus_cas_service/bootstrapTemplate and a sample file can be found at $GLOBUS_LOCATION/share/globus_cas_service/bootstrapSample.</td>
</tr>
<tr>
<td>-implicit</td>
<td>Populates the database with: a) CAS server implicit data—this adds the CAS server itself as a CAS object and implicit service/actions like enrolling users, objects and so on; and b) service/action and namespace relevant to FTP like read, write and so on.</td>
</tr>
</tbody>
</table>

Sample bootstrap command:

```
To bootstrap the CAS database with both implicit and user data the following command can be used. Prior to running the command, the following files need to be created with appropriate values filled in.

- $GLOBUS_LOCATION/share/globus_cas_service/casDbProperties
```
dbDriver=org.postgresql.Driver

dbConnectionURL=jdbc:postgresql://127.0.0.1/casDatabase

dbUsername=tester

dbPassword=foobar

- $GLOBUS_LOCATION/share/globus_cas_service/bootstrapProperties. The bootstrap command adds a trust anchor and user to the database using direct SQL commands. This file is used to store configuration information about the trust anchor and user to add. Comments in the sample file shown below describe each property.

```
# A nick name for trust anchor to add. The nickname used only within the CAS database. If X509 certificates are used, a trust anchor is a CA
ta-name=defaultTrustAnchor
# The authentication method used by this trust anchor. For example, X509
ta-authMethod=X509
# Authentication Data. If X509 is used, it is typically the DN of the CA.
ta-authData=/C=US/O=Globus/CN=Default CA
# A user nickname. This user is given super user privileges in the CAS database
user-name=superUser
# The user subject, if X509 is used it is the DN from the user's credential.
user-subject=/O=Grid/O=Globus/OU=something/CN=someone
# A user group to add this user to go. Any user is this group is given super user privileges.
userGroupname=superUserGroup
```

- Command to run:

```
casadmin$ cd $GLOBUS_LOCATION
casadmin$ bin/cas-server-bootstrap \
d -d share/globus_cas_service/casDbProperties \
-implicit -b \\ share/globus_cas_service/bootstrapProperties
```

Once the database has been created the CAS service needs to be configured to use it as described here.\footnote{../../../../security/casWS_AA_CAS_Public_Interfaces.html#s-cas-public-config}

3.3. Deploying into Tomcat

CAS has been tested to work without any additional setup when deployed into Tomcat. Please follow these basic instructions\footnote{http://www.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html#javawscore-admin-tomcat-deploying} to deploy GT4 services into Tomcat. Note that the Java WS Core module needs to be built and configured as described in the previous sections.
4. Testing

CAS has two sets of tests, one for the back end database access module and another set to test the service itself. To install both tests, install the CAS test package (gt4-cas-delegation-test-3.9-src_bundle.tar.gz) using GPT. **FILLME: instructions** into GLOBUS_LOCATION.

Assumptions:

- A back end database has been set up and configured.
- The CAS service and tests are installed in $GLOBUS_LOCATION.
- The sample commands assume:
 1. The container is started up on localhost and port 8443.
 2. The database username is tester.
 3. The database name is casDatabase.
 4. The database is on host foo.baredu and the default port.

4.1. Testing the back end database module

1. Run:

   ```
   cd $GLOBUS_LOCATION
   ```

2. Populate the file etc/globus_cas_unit_test/casTestProperties with the following database configuration information:

 Table 14.3. Test database properties

<table>
<thead>
<tr>
<th>dbDriver</th>
<th>The JDBC driver to be used</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbConnectionURL</td>
<td>The JDBC connection url to be used to connect to the database</td>
</tr>
<tr>
<td>dbUsername</td>
<td>The user name to use when connecting to the database</td>
</tr>
<tr>
<td>dbPassword</td>
<td>The password corresponding to the user name</td>
</tr>
</tbody>
</table>

3. The database needs to be empty for these tests to work and will be deleted by this target. Run:

   ```
   ant -f share/globus_cas_unit_test/cas-test-build.xml testDatabase
   ```

4. Test reports are placed in $GLOBUS_LOCATION/share/globus_cas_unit_test/cas-test-reports.

Important

The database bootstrap needs to be done again for the server to be ready to receive client requests.
4.2. Testing the CAS service module

These tests can be set up so as to be able to test multiple user scenarios or can be configured to run as just a single identity. A file with configuration information needs to be setup for the tests to pick up parameters.

There are two test targets in the service tests. The first set of tests should be run with a set of credentials, where the user is given super user permissions on the CAS server. These tests also set the permissions for another user to run the second set of tests, without super user permissions. The first user DN is configured as property "user1SubjectDN" and the second user is configured as property "user2SubjectDN".

The test can be simplified to use same credentials for both tests. In such a scenario, the DN of credential used to run the tests should be configured as "user1SubjectDN" and the property "user2SubjectDN" can be set to any string.

All the configuration information for the test needs to be configured in the etc/globus_cas_unit_test/casTestProperties file. The database section of the properties file needs to be configured as described here. In addition the following properties need to be configured to run the tests:

Table 14.4. Test properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user1SubjectDN</td>
<td>The DN of the user running the first set of tests.</td>
</tr>
<tr>
<td>user2SubjectDN</td>
<td>The DN of the user running the second set of tests. This DN has to be different from the value specified for user1SubjectDN. Note: Both tests can be run as the same user as long as the DN of the certificate being used to run the tests matches the value specified in user1SubjectDN. In this case, the value of user2SubjectDN can be set to a arbitrary string.</td>
</tr>
<tr>
<td>maxAssertionLifetime</td>
<td>Should match the value set in the service configuration as shown in Configuration Information 12.</td>
</tr>
<tr>
<td>host</td>
<td>Host on which the CAS service is running.</td>
</tr>
<tr>
<td>port</td>
<td>Port on which the CAS service is running.</td>
</tr>
<tr>
<td>securityType</td>
<td>This is an optional parameter indicating the security type to use. Can be set to message for Secure Message or conversation for Secure Conversation or transport for Secure Transport (the default configuration).</td>
</tr>
<tr>
<td>protType</td>
<td>This is an optional parameter indicating the protection type to use. Can be set to signature for integrity protection (the default configuration) or encryption for privacy protection.</td>
</tr>
<tr>
<td>serverDN</td>
<td>This should be set to the DN of the certificate used by the CAS server if http is used. If https is used, it should be the DN of the certificate used by the container. Note that the DN should have "/" as delimiter rather than ","</td>
</tr>
</tbody>
</table>

Steps for testing:

1. Run:
   ```
   cd $GLOBUS_LOCATION
   ```

2. Source $GLOBUS_LOCATION/etc/globus-devel-env.sh or $GLOBUS_LOCATION/etc/globus-devel-env.csh or $GLOBUS_LOCATION/etc/globus-devel-env.bat as appropriate for your environment.

12 ../../security/cas/WS_AA_CAS_Public_Interfaces.html#s-cas-public-config
3. In the test properties file, set `user2SubjectDN` to the subject in your regular proxy. The following returns the appropriate string:

 casadmin$ java org.globus.tools.CertInfo -subject -globus

4. Generate an independent proxy using the following command:

 casadmin$ java org.globus.tools.ProxyInit -independent

5. Set the identity in the proxy generated from the above step as `user1SubjectDN` in the test properties file. The following command will return the relevant string:

 casadmin$ java org.globus.tools.ProxyInfo -subject -globus

6. Start the container on the port and host configured in Table 14.4, “Test properties”.

7. The following command runs the tests for self permissions and sets up the database for a user with subjectDN `user2SubjectDN`:

 casadmin$ ant -f share/globus_cas_unit_test/cas-test-build.xml user1TestService

8. To test as the second user, generate a proxy for the subject DN specified for the second user:

 casadmin$ java org.globus.tools.ProxyInit

9. The database needs to be empty for these tests to work and this target deletes all entries in database. Then run the following:

 casadmin$ ant -f share/globus_cas_unit_test/cas-test-build.xml user2TestService

10. Test reports are placed in `$GLOBUS_LOCATION/share/globus_cas_unit_test/cas-test-reports`.

11. After these tests, the CAS database needs to be reset. The following command will delete all entries from the database:

 casadmin$ psql -U casadmin -d casDatabase -f $GLOBUS_LOCATION/etc/globus_cas_utils/database_delete.sql

⚠️ **Important**

The database bootstrap needs to be done again for the server to be ready to receive client requests.

5. Example of CAS Server Administration

The following contains an example of administering the CAS server policies using the CAS administrative clients described. *FILLME: add link to admin command line when its done.*

Alice, Bob and Carol are three members of a community who have set up a Community Authorization Service:

- Alice's role is primarily to administer the CAS server.
Bob is an analyst who needs read access to much of the community data.

Carol is a scientist who needs to be able to both read and write community data.

These examples show how:

1. Alice adds the users Bob and Carol to the CAS server.
2. Alice adds a FTP server with some data available to the community.
3. Alice adds permissions for the users using the CAS administration clients.

These examples assume the following:

- Alice has installed the CAS server and bootstrapped the database with herself as super user. Please refer to previous chapters in this guide for details on setting up the server and bootstrapping with data.

- Alice's nickname on the CAS server is alice and at bootstrap she has created a user group, suGroup, which has super user permissions on the database.

- The CAS service URL is http://localhost:8080/wsrf/services/CASService.

- For all commands listed below the environment variable $GLOBUS_LOCATION has been set to point to the Globus Toolkit installation and the commands are run from $GLOBUS_LOCATION.

- The environment variable CAS_SERVER_URL has been set to point to the CAS server URL, http://localhost:8080/wsrf/services/CASService.

5.1. Adding a user group

Since at the time of booting up the CAS server only the user group that has super user permissions on the CAS server is created, Alice will want to create another user group to which new users can be added and to which permissions on newly enrolled CAS entities may be given. This also eases the process of giving the same rights to many users. Given that there are two types of roles in the community she might want to create two groups, analysts and scientists.

Also, all permissions on the newly created group will be given to users of a particular user group. For example, Alice may want all users of the user group analysts to be able to manipulate the group.

To create a new user group Alice uses the cas-group-admin client. It requires a name for the new group being created, say analysts.

alice% cas-group-admin user create analysts analysts

This will create a user group analysts and give all users in that group the permission to manage the group (i.e add users, remove users and so on). She can similarly create a group called scientists.

5.2. Adding a trust anchor

Prior to adding Bob and Carol to the CAS server, Alice needs to ensure that the trust anchors for both have been added. If they share the trust anchor with Alice then this step can be skipped, since at bootstrap Alice's trust anchor would have been added to the database.

In our example Alice and Carol share a trust anchor different from Bob's. Therefore, Alice needs to add Bob's trust anchor by using the cas-enroll client with the trustAnchor option. She needs to provide details about the trust anchor such as the authentication method and authentication data used.
alice% cas-enroll trustAnchor analysts AbcTrust X509 "/C=US/O=some/CN=ABC CA"

The above will enroll a trust anchor with nickname AbcTrust that uses X509 as its authentication method and has the DN specified in the command. The members of the analysts user group are given all rights on this object. This implies that any user who has this trust anchor is assumed to present credentials signed by this trust anchor.

5.3. Adding users

Now Alice can add Bob and Carol as users using the cas-enroll command with the user option. She needs to provide the user's subject DN and a reference to the trust anchor used by the user. As with any entity added to the CAS server, the admin needs to choose a user group whose members will have all permissions on that entity. In this example, Alice would like the members of the user group suUser to be able to manipulate the user entity Bob.

alice% cas-enroll user suUser bob "/O=Our Community/CN=Bob Foo" AbcTrust

Alice uses a similar command to add Carol to the CAS database.

5.4. Adding users to a user group

The CAS server allows rights to be assigned only to user groups and not to individual users. Hence, before Alice can assign rights to Bob or Carol, she needs to add them to some user group. She does this by using the cas-group-add-entry client with the user option to indicate she is adding to a user group. This client requires the group name and the nickname of the user who needs to be added. To add Bob to the analysts group, the command would be:

alice% cas-group-add-entry user analysts bob

If a user group scientists was created, Carol could similarly be added as a member.

5.5. Adding a new FTP server

Alice now has the community users in the database. The next step is to add some resources. Because the community currently has the FTP server foo.bar.edu available to it she will add it to the CAS database.

Each resource or object in the CAS server has a namespace associated with it that defines certain features. For example, it can define the comparison algorithm that is to be used when the object's name is compared. It may also define the base URL that should be prefixed to objects that belong to this namespace. In this case, Alice chooses to use the FTP-DirectoryTree namespace that is added to the CAS server at startup. She uses the cas-enroll client with the object option to add the FTP server to the CAS database:

alice% cas-enroll object suGroup ftp://foo.bar.edu/* FTPDirectoryTree

This command adds the FTP server as an object and gives all members of the suGroup rights to manipulate the object.

To be able to grant/revoke access on an individual directory, add an object for the directory. For example, if Alice would like to be able to manipulate the data directory on the server as a separate entity, the following command will add an object for that.

alice% cas-enroll object suGroup ftp://foo.bar.edu/data/* FTPDirectoryTree

5.6. Creating an object group

Alice suspects that the community will end up with more directories containing data on other servers that will have polices identical with the ones on the /data directory on foo.bar.edu. To manage this she is going to create an object
group called data and assign foo.bar.edu/data to this group. This will allow her to grant rights on this group and easily add other directories to this group later.

To create a group called data, she uses the cas-group-admin client with the group and create options:

alice% cas-group-admin object create suGroup data

This creates an object group called data and the members of suGroup get all rights on this group and hence should be able to add/remove members, grant rights to add/delete from this group to others and also delete this group.

5.7. Adding members to an object group

Alice now can add foo.bar.edu/data to the data group. She can do this by using the cas-group-add-entry with the object option. To add the above object, ftp://foo.bar.edu/data/* in the namespace FooFTPNamespace, to the object group data Alice uses the following command:

alice% cas-group-add-entry object data object FooFTPNamespace ftp://foo.bar.edu/data/*

In the above command:

• the first object refers to the group type.
• data is the name of the object group.
• the second object refers to the type of CAS entity that is being added as a member.
• the last two parameters define the namespace and the object that needs to be added.

5.8. Adding service types

Alice now needs to add information about the kinds of rights that can be granted for these objects. These are stored as service types and relevant actions are mapped to these service types.

In this scenario, the kind of service types that Alice should add would be file, directory and so on. To do so the cas-enroll client with the serviceType option may be used. To add a service type called file and give members of suGroup all rights on this service type Alice uses the following command.

alice% cas-enroll serviceType suGroup file

5.9. Adding action mappings

The relevant action mappings to the above mentioned service types would be read, write and so on. Alice needs to add these mappings to the database so that she can grant rights that allow a user to have file/read or file/write permissions on some object.

To add action mappings to a service type, she uses the cas-action client with the add option. The following command adds a mapping of action read to service type file.

alice% cas-action add file add

Similarly, she can add other mappings, like write, to this service type.
5.10. Granting permissions

Alice now has resources in the object group *data* and users in the user groups *analysts* and *scientists*. She now wants to grant permissions on the *data* group to the analysts and scientists, namely read permissions to the analysts and read and write permissions to the scientists.

To grant permissions Alice needs to use the `cas-rights-admin` with the *grant* option. To give read permissions to the analysts group Alice runs:

```
alice% cas-rights-admin grant analysts objectGroup data serviceAction file read
```

She similarly grants rights to *scientists* group.

6. Security Considerations

- The database username/password is stored in the service configuration file and the test properties file. Ensure correct permissions to protect the information.

7. Troubleshooting

7.1. Database connectivity errors

If the CAS service fails with following error:

```plaintext
faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.userException
faultSubcode: 
faultString: org.apache.commons.dbcp.DbcpException: Connection refused. Check that the hostname and port are correct and that the postmaster is accepting TCP/IP connections.
```

- Ensure the database properties (connectionURL, userName, password) in `$GLOBUS_LOCATION/globus_cas_service/jndi-config.xml` are correct.
- Ensure that the database is set up with permission to receive TCP/IP connections.

7.2. Credential Errors

The following are some common problems that may cause clients or servers to report that credentials are invalid:

7.2.1. Your proxy credential may have expired

Use `grid-proxy-info` to check whether the *proxy credential* has actually expired. If it has, generate a new proxy with `grid-proxy-init`.
7.2.2. The system clock on either the local or remote system is wrong

This may cause the server or client to conclude that a credential has expired.

7.2.3. Your end-user certificate may have expired

Use grid-cert-info to check your certificate's expiration date. If it has expired, follow your CA's procedures to get a new one.

7.2.4. The permissions may be wrong on your proxy file

If the permissions on your proxy file are too lax (for example, if others can read your proxy file), Globus Toolkit clients will not use that file to authenticate. You can “fix” this problem by changing the permissions on the file or by destroying it (with grid-proxy-destroy) and creating a new one (with grid-proxy-init). However, it is still possible that someone else has made a copy of that file during the time that the permissions were wrong. In that case, they will be able to impersonate you until the proxy file expires or your permissions or end-user certificate are revoked, whichever happens first.

7.2.5. The permissions may be wrong on your private key file

If the permissions on your end user certificate private key file are too lax (for example, if others can read the file), grid-proxy-init will refuse to create a proxy certificate. You can “fix” this by changing the permissions on the private key file; however, you will still have a much more serious problem: it's possible that someone has made a copy of your private key file. Although this file is encrypted, it is possible that someone will be able to decrypt the private key, at which point they will be able to impersonate you as long as your end user certificate is valid. You should contact your CA to have your end-user certificate revoked and get a new one.

7.2.6. The remote system may not trust your CA

Verify that the remote system is configured to trust the CA that issued your end-entity certificate. See the Administrator's Guide\[sup]13\[/sup] for details.

7.2.7. You may not trust the remote system's CA

Verify that your system is configured to trust the remote CA (or that your environment is set up to trust the remote CA). See the Administrator's Guide\[sup]14\[/sup] for details.

7.2.8. There may be something wrong with the remote service's credentials

It is sometimes difficult to distinguish between errors reported by the remote service regarding your credentials and errors reported by the client interface regarding the remote service's credentials. If you can't find anything wrong with your credentials, check for the same conditions (or ask a remote administrator to do so) on the remote system.

\[sup]14\[/sup] http://www.globus.org/toolkit/docs/4.0/admin/docbook/
7.3. Some tools to validate certificate setup

7.3.1. Check that the user certificate is valid

openssl verify -CApath /etc/grid-security/certificates -purpose sslclient ~/.globus/usercert.pem

7.3.2. Connect to the server using s_client

openssl s_client -ssl3 -cert ~/.globus/usercert.pem -key ~/.globus/userkey.pem -CApath /etc/grid-security/certificates -connect <host:port>

Here <host:port> denotes the server and port you connect to.

If it prints an error and puts you back at the command prompt, then it typically means that the server has closed the connection, i.e. that the server was not happy with the client’s certificate and verification. Check the SSL log on the server.

If the command "hangs" then it has actually opened a telnet style (but secure) socket, and you can "talk" to the server.

You should be able to scroll up and see the subject names of the server’s verification chain:

depth=2 /DC=net/DC=ES/O=ESnet/OU=Certificate Authorities/CN=ESnet Root CA 1
verify return:1
depth=1 /DC=org/DC=DOEGrids/OU=Certificate Authorities/CN=DOEGrids CA 1
verify return:1
depth=0 /DC=org/DC=doegrids/OU=Services/CN=wiggum.mcs.anl.gov
verify return:1

In this case there were no errors. Errors would give you an extra line next to the subject name of the certificate that caused the error

7.3.3. Check that the server certificate is valid

Requires root login on server.

openssl verify -CApath /etc/grid-security/certificates -purpose sslserver /etc/grid-security/...
Chapter 15. RLS Admin Guide

1. Building and Installing

Starting with GT version 4.0.5, the RLS is now built and installed as part of a default GT installation. The only extra installation step required for this component is to set the `LD_LIBRARY_PATH` prior to installation. For detailed instructions on building and installing RLS, see Appendix A, Building and Installing RLS.

If you are using a GT release prior to 4.0.5, we highly recommend upgrading your installation\(^1\) to the latest version.

Important
The postinstall step of the RLS installation requires that the `LD_LIBRARY_PATH` include `$GLOBUS_LOCATION/lib`.

Use the following command for bash shell:

```bash
% export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$GLOBUS_LOCATION/lib
```

Use the following command for C shell:

```bash
% setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$GLOBUS_LOCATION/lib
```

If you installed GT without setting the `LD_LIBRARY_PATH` you will need to set it and then run the RLS setup script as follows:

```bash
% $GLOBUS_LOCATION/setup/globus/setup-globus-rls-server
```

2. Configuring

2.1. Configuration overview

Configuration settings for the RLS are specified in the `globus-rls-server.conf` file.

If the configuration file is not specified on the command line (see the `-c`\(^2\) option) then it is looked for in both:

- `$GLOBUS_LOCATION/etc/globus-rls-server.conf`
- `/usr/local/etc/globus-rls-server.conf` if `GLOBUS_LOCATION` is not set

NOTE: command line options always override items found in the configuration file.

The configuration file is a sequence of lines consisting of a keyword, whitespace, and a value. Comments begin with `#` and end with a newline.

\(^1\) /toolkit/downloads/
\(^2\) http://www.globus.org/toolkit/docs/4.0/data/rls/RLS_Public_Interfaces.html#s-rls-Public_Interfaces-config
2.2. Syntax of the interface
Table 15.1. Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl user: permission</td>
<td>acl entries may be a combination of DNs and local usernames. If a DN is not found in the gridmap file then the file is used to search the acl list.</td>
</tr>
<tr>
<td></td>
<td>A gridmap file may also be used to map DNs to local usernames, which in turn are matched against the regular expressions in the acl list to determine the user's permissions.</td>
</tr>
<tr>
<td></td>
<td>user is a regular expression matching distinguished names (or local usernames if a gridmap file is used) of users allowed to make calls to the server.</td>
</tr>
<tr>
<td></td>
<td>There may be multiple acl entries, with the first match found used to determine a user's privileges.</td>
</tr>
<tr>
<td>[permission]</td>
<td>is one or more of the following values:</td>
</tr>
<tr>
<td></td>
<td>• lrc_read Allows client to read an LRC.</td>
</tr>
<tr>
<td></td>
<td>• lrc_update Allows client to update an LRC.</td>
</tr>
<tr>
<td></td>
<td>• rli_read Allows client to read an RLI.</td>
</tr>
<tr>
<td></td>
<td>• rli_update Allows client to update an RLI.</td>
</tr>
<tr>
<td></td>
<td>• admin Allows client to update an LRC's list of RLIs to send updates to.</td>
</tr>
<tr>
<td></td>
<td>• stats Allows client to read performance statistics.</td>
</tr>
<tr>
<td></td>
<td>• all Allows client to do all of the above.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication</td>
<td>Enable or disable GSI authentication.</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>If authentication is enabled (true), clients should use the URL schema rls: to connect to the server.</td>
</tr>
<tr>
<td></td>
<td>If authentication is not enabled (false), clients should use the URL schema rlsn:.</td>
</tr>
<tr>
<td>db_pwd password</td>
<td>Password to use to connect to the database server.</td>
</tr>
<tr>
<td></td>
<td>The default value is changethis.</td>
</tr>
<tr>
<td>db_user databaseuser</td>
<td>Username to use to connect to database server.</td>
</tr>
<tr>
<td></td>
<td>The default value is dbperson.</td>
</tr>
<tr>
<td>idletimeout seconds</td>
<td>Seconds after which idle connections close.</td>
</tr>
<tr>
<td></td>
<td>The default value is 900.</td>
</tr>
<tr>
<td>loglevel N</td>
<td>Sets loglevel to N (default is 0). Higher levels mean more verbosity.</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td><code>lrc_bloomfilter_num-hash N</code></td>
<td>Number of hash functions to use in Bloom filters. The default value is 3. Possible values are 1 through 8. This value, in conjunction with <code>lrc_bloomfilter_ratio N</code>, will determine the number of false positives that may be expected when querying an RLI that is updated via Bloom filters. Note: The default values of 3 and 10 give a false positive rate of approximately 1%.</td>
</tr>
<tr>
<td><code>lrc_bloomfilter_ratio N</code></td>
<td>Sets ratio of bloom filter size (in bits) to number of LFNs in the LRC catalog (in other words, size of the Bloom filter as a multiple of the number of LFNs in the LRC database.) This is only meaningful if Bloom filters are used to update an RLI. Too small a value will generate too many false positives, while too large a value wastes memory and network bandwidth. The default value is 10. Note: The default values of 3 and 10 give a false positive rate of approximately 1%.</td>
</tr>
<tr>
<td><code>lrc_buffer_time N</code></td>
<td>LRC to RLI updates are buffered until either the buffer is full or this much time in seconds has elapsed since the last update. The default value is 30.</td>
</tr>
<tr>
<td><code>lrc_dbname</code></td>
<td>Name of LRC database. The default value is lrcdb.</td>
</tr>
<tr>
<td><code>lrc_server</code></td>
<td>If LRC server, the value should be true. The default value is false.</td>
</tr>
<tr>
<td><code>lrc_update_bf seconds</code></td>
<td>Interval in seconds between LRC to RLI updates when the RLI is updated by Bloom filters. In other words, how often an LRC server does a Bloom filter soft state update. This can be much smaller than the interval between updates without using Bloom filters (<code>lrc_update_ll</code>). The default value is 300.</td>
</tr>
<tr>
<td><code>lrc_update_factor N</code></td>
<td>If <code>lrc_update_immediate mode</code> is on, and the LRC server is in sync with an RLI server (an LRC and RLI are synced if there have been no failed updates since the last full soft state update), then the interval between RLI updates for this server (<code>lrc_update_ll</code>) is multiplied by the value of this option.</td>
</tr>
<tr>
<td>`lrc_update_immediate true</td>
<td>false`</td>
</tr>
<tr>
<td><code>lrc_update_ll seconds</code></td>
<td>Number of seconds before an LRC server does an LFN list soft state update. The default value is 86400.</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>lrc_update_retry seconds</td>
<td>Seconds to wait before an LRC server will retry to connect to an RLI server that it needs to update.</td>
</tr>
<tr>
<td></td>
<td>The default value is 300.</td>
</tr>
<tr>
<td>maxbackoff seconds</td>
<td>Maximum seconds to wait before re-trying listen in the event of an I/O error.</td>
</tr>
<tr>
<td></td>
<td>The default value is 300.</td>
</tr>
<tr>
<td>maxfreethreads N</td>
<td>Maximum number of idle threads. Excess threads are killed.</td>
</tr>
<tr>
<td></td>
<td>The default value is 5.</td>
</tr>
<tr>
<td>maxconnections N</td>
<td>Maximum number of simultaneous connections.</td>
</tr>
<tr>
<td></td>
<td>The default value is 100.</td>
</tr>
<tr>
<td>maxthreads N</td>
<td>Maximum number of threads running at one time.</td>
</tr>
<tr>
<td></td>
<td>The default value is 30.</td>
</tr>
<tr>
<td>myurl URL</td>
<td>URL of server.</td>
</tr>
<tr>
<td></td>
<td>The default value is rls://<hostname>:port</td>
</tr>
<tr>
<td>odbcini filename</td>
<td>Sets environment variable ODBCINI.</td>
</tr>
<tr>
<td></td>
<td>If not specified, and ODBCINI is not already set, then the default value is $GLOBUS_LOCATION/var/odbc.ini.</td>
</tr>
<tr>
<td>pidfile filename</td>
<td>Filename where pid file should be written.</td>
</tr>
<tr>
<td></td>
<td>The default value is $GLOBUS_LOCATION/var/<programname>.pid.</td>
</tr>
<tr>
<td>port N</td>
<td>Port the server listens on.</td>
</tr>
<tr>
<td></td>
<td>The default value is 39281.</td>
</tr>
<tr>
<td>result_limit limit</td>
<td>Sets the maximum number of results returned by a query.</td>
</tr>
<tr>
<td></td>
<td>The default value is 0 (zero), which means no limit.</td>
</tr>
<tr>
<td></td>
<td>If a query request includes a limit greater than this value, an error (GLOBUS_RLS_BADARG) is returned.</td>
</tr>
<tr>
<td></td>
<td>If the query request has no limit specified, then at most result_limit records are returned by a query.</td>
</tr>
<tr>
<td>rli_bloomfilter true</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>If true, then only Bloom filter updates are accepted from LRCs.</td>
</tr>
<tr>
<td></td>
<td>If false, full LFN lists are accepted.</td>
</tr>
<tr>
<td></td>
<td>Note: If Bloom filters are enabled, then the RLI does not support wildcarded queries.</td>
</tr>
</tbody>
</table>
If an RLI is configured to accept bloom filters (rli_bloomfilter true), then Bloom filters may be saved to this directory after updates.

This directory is scanned when an RLI server starts up and is used to initialize Bloom filters for each LRC that updated the RLI.

This option is useful when you want the RLI to recover its data immediately after a restart rather than wait for LRCs to send another update.

If the LRCs are updating frequently, this option is unnecessary and may be wasteful in that each Bloom filter is written to disk after each update.

- none
 Bloom filters are not saved to disk.
 This is the default.
- default
 Bloom filters are saved to the default directory:
 - $GLOBUS_LOCATION/var/rls-bloomfilters if $GLOBUS_LOCATION is set
 - else, /tmp/rls-bloomfilters
- pathname
 Bloom filters are saved to the named directory.
 Any other string is used as the directory name unchanged.
 The Bloom filter files in this directory have the name of the URL of the LRC that sent the Bloom filter, with slashes (/) changed to percent signs (%) and " .bf" appended.

<table>
<thead>
<tr>
<th>rli_bloomfilter_dir</th>
<th>none</th>
<th>default</th>
<th>pathname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the RLI database.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The default value is rlidb.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval (in seconds) between RLI expirations of stale entries. In other words, how often an RLI server will check for stale entries in its database.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The default value is 28800.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval (in seconds) after which entries in the RLI database are considered stale (presumably because they were deleted in the LRC).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The default value is 86400.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This value should be no smaller than lrc_update_ll.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stale RLI entries are not returned in queries.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If the LRC server is responding, this value is not used. Instead the value of lrc_update_ll or lrc_update_bf is retrieved from the LRC server, multiplied by 1.2, and used as the value for this option.
If an RLI server, the value should be `true`. The default value is `false`.

rli_server

<table>
<thead>
<tr>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an RLI server, the value should be <code>true</code>.</td>
<td></td>
</tr>
<tr>
<td>The default value is <code>false</code>.</td>
<td></td>
</tr>
</tbody>
</table>

rlscertfile filename

<table>
<thead>
<tr>
<th>Name of the X.509 certificate file identifying the server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>This value is set by setting environment variable <code>X509_USER_CERT</code>.</td>
</tr>
</tbody>
</table>

rlskeyfile filename

<table>
<thead>
<tr>
<th>Name of the X.509 key file for the server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>This value is set by setting environment variable <code>X509_USER_KEY</code>.</td>
</tr>
</tbody>
</table>

startthreads N

<table>
<thead>
<tr>
<th>Number of threads to start initially.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The default value is 3.</td>
</tr>
</tbody>
</table>

timeout seconds

<table>
<thead>
<tr>
<th>Timeout (in seconds) for calls to other RLS servers (e.g., for LRC calls to send an update to an RLI).</th>
</tr>
</thead>
</table>

3. Deploying

This section does not apply to the RLS.

4. Testing

You can use the programs `globus-rls-admin` and `globus-rls-cli` to test functionality. See their respective `man` pages for details on their use.

1. Start the server in debug mode with the command:

   ```
   $GLOBUS_LOCATION/bin/globus-rls-server -d [-N]
   ```

 The `-N` option is helpful: if you do not have a host certificate for the server host, or a user certificate for yourself, it disables authentication.

2. Ping the server using `globus-rls-admin`:

   ```
   $GLOBUS_LOCATION/bin/globus-rls-admin -p rls://serverhost
   ```

 If you disabled authentication (by starting the server with the `-N` option), then use this command:

   ```
   $GLOBUS_LOCATION/bin/globus-rls-admin -p rlsn://serverhost
   ```

5. Security Considerations

Security recommendations include:

- **Dedicated User Account**: It is recommended that users create a dedicated user account for installing and running the RLS service (e.g., `globus` as recommended in the general GT installation instructions). This account may be used to install and run other services from the Globus Toolkit.

- **Key and Certificate**: It is recommended that users do not use their hostkey and hostcert for use by the RLS service. Create a containerkey and containercert with permissions 400 and 644 respectively and owned by the `globus` user. Change the `rlskeyfile` and `rlscertfile` settings in the RLS configuration file (`$GLOBUS_LOCATION/etc/globus-rls-server.conf`) to reflect the appropriate filenames.
• **LRC and RLI Databases:** Users must ensure security of the RLS data as maintained by their chosen database management system. Appropriate precautions should be made to protect the data and access to the database. Such precautions may include creating a user account specifically for RLS usage, encrypting database users’ passwords, etc.

• **RLS Configuration:** It is recommended that the RLS configuration file ($GLOBUS_LOCATION/etc/globus-rls-server.conf) be owned by and accessible only by the dedicated user account for RLS (e.g., globus account per above recommendations). The file contains the database user account and password used to access the LRC and RLI databases along with important settings which, if tampered with, could adversely affect the RLS service.

6. Troubleshooting

Information on troubleshooting can be found in the FAQ\(^3\).

7. Usage statistics collection by the Globus Alliance

The following usage statistics are sent by RLS Server by default in a UDP packet:

• Component identifier
• Usage data format identifier
• Time stamp
• Source IP address
• Source hostname (to differentiate between hosts with identical private IP addresses)
• Version number
• Uptime
• **LRC** service indicator
• **RLI** service indicator
• Number of **LFNs**
• Number of **PFNs**
• Number of Mappings
• Number of RLI LFNs
• Number of RLI LRCs
• Number of RLI Senders
• Number of RLI Mappings

\(^3\) http://www.globus.org/toolkit/data/rls/rls_faq.html
- Number of threads
- Number of connections

The RLS sends the usage statistics at server startup, server shutdown, and once every 24 hours when the service is running.

If you wish to disable this feature, you can set the following environment variable before running the RLS:

```bash
export GLOBUS_USAGE_OPTOUT=1
```

By default, these usage statistics UDP packets are sent to `usage-stats.globus.org:4180` but can be redirected to another host/port or multiple host/ports with the following environment variable:

```bash
export GLOBUS_USAGE_TARGETS="myhost.mydomain:12345 myhost2.mydomain:54321"
```

You can also dump the usage stats packets to stderr as they are sent (although most of the content is non-ascii). Use the following environment variable for that:

```bash
export GLOBUS_USAGE_DEBUG=MESSAGES
```

Also, please see our policy statement\(^4\) on the collection of usage statistics.

\(^4\) http://www.globus.org/toolkit/docs/4.0/Usage_Stats.html
Appendix A. Building and Installing RLS

The following procedures include the optional steps to set up an RLS server using MySQL or PostgreSQL and ODBC libraries of your choice. Post setup configuration (tuning the server parameters, etc) are not included in this document.

1. Requirements

You need to download and install the following software (follow the links to download):

- Installation of GT 4.0

- A Relational Database Server (RDBMS) that supports ODBC. We provide instructions for PostgreSQL and MySQL.

 - If you use PostgreSQL, you'll also need psqlODBC (the ODBC driver for PostgreSQL).

 - If you use MySQL, you'll also need the MyODBC (Connector/ODBC) packages. MySQL's top level installation directory must be specified. By default these are assumed to be in $GLOBUS_LOCATION.

- The iODBC package is used to interface to the ODBC layer of the RDBMS. The location of iODBC and the odbc.ini file must be specified before installing the RLS server.

2. Setting environment variables

The following environment variables can be used to override the default locations. These should be set prior to installing the RLS server.

The location of iODBC and the odbc.ini file must be specified before installing the RLS server. Also, if you're using MySQL its top level installation directory must be specified. By default, these are assumed to be in $GLOBUS_LOCATION.

In addition, if you're building from source and wish to build the client Java API (included in the server bundles), you need to set the path to the Java Development Toolkit (JDK), version 1.4 or later.

Table A.1. RLS Build Environment Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBUS_IODBC_PATH</td>
<td>$GLOBUS_LOCATION</td>
</tr>
<tr>
<td>ODBCINI</td>
<td>$GLOBUS_LOCATION/var/odbc.ini</td>
</tr>
<tr>
<td>JAVA_HOME</td>
<td>none</td>
</tr>
<tr>
<td>GLOBUS_MYSQL_PATH</td>
<td>$GLOBUS_LOCATION (if using MySQL)</td>
</tr>
</tbody>
</table>

You can use the following commands to set these variables. You only need to set these variables for RLS installation; they are not used when running RLS. This document assumes you are using the csh shell or one of its variants. If you're using sh or something similar (eg bash), you should change the setenv commands to export variable=value.

1 http://www.globus.org/toolkit/docs/4.0/admin/docbook/
2 http://www.postgresql.org
3 http://gborg.postgresql.org
4 http://www.mysql.com
5 http://www.mysql.com
6 http://www.iodbc.org
• setenv GLOBUS_IODBC_PATH $GLOBUS_LOCATION
• setenv ODBCINI $GLOBUS_LOCATION/var/odbc.ini
• setenv JAVA_HOME /usr/jdk/1.4
• setenv GLOBUS_MYSQL_PATH $GLOBUS_LOCATION # if using MySQL

3. Installing iODBC

⚠️ Caution

Please note that at the time of the GT 4.0 release, incompatibility issues were identified between iODBC and MyODBC. Our brief evaluation indicated that iODBC 3.52.2 is incompatible with MyODBC 3.51.11 and possibly earlier versions as well. We have used iODBC 3.51.1 and 3.51.2 in combination with MyODBC 3.51.06. Installing incompatible iODBC and MyODBC versions from binary packages may not indicate an error until runtime. Building these libraries from source packages may be the best way to ensure that you have installed a compatible combination.

⚠️ Important

Recommended Version: 3.51.2

3.1. Run the install commands

The following commands were used during RLS development to install iODBC.

% cd $IODBCSRC % ./configure --prefix=$GLOBUS_IODBC_PATH --disable-gtktest --with-pthreads
--with-iodbc-inidir=$ODBCINIDIR % gmake % gmake install

where:

• $IODBCSRC is the directory where you untarred the iODBC sources
• $ODBCINIDIR is the directory where you plan to install the odbc.ini file (which you will create in the next step).

3.2. Create the odbc.ini file

Create the odbc.ini file in $ODBCINIDIR:

The contents should include the path to where you intend to install the ODBC driver for your RDBMS (such as psqlodbc.so or libmyodbc3.so).

The following is an example that should work with psqlODBC. It assumes you will name your LRC and RLI databases lrc1000 and rli1000:

[ODBC Data Sources]
lrc1000=lrc database
rli1000=rli database

[lrc1000]
Description=LRC database
DSN=lrc1000
ServerType=postgres
ServerName=localhost
Database=lrc1000
ReadOnly=no

[rli1000]
Description=RLI database
DSN=rli1000
ServerType=postgres
ServerName=localhost
Database=rli1000
ReadOnly=no

[Default]
Driver=/path/to/psqlodbc.so
Port=5432

Note: You do not need an RLI database if you plan to use Bloom filters for LRC to RLI updates (Bloom filters are kept in memory). In this case you can omit the RLI entries below.

Bug: psqlODBC will not find a Data Source Name (DSN) in the system odbc.ini file $ODBCINIDIR/odbc.ini. It will find DSNs in the user's odbc.ini file if it exists at $HOME/.odbc.ini.

One work around is to copy or symlink the system odbc.ini file to each user's home directory. psqlODBC does find system DSNs in a file called odbcinst.ini, which is looked for in the etc subdirectory where iODBC was installed, $GLOBUS_IODBC_PATH/etc/odbcinst.ini. So another option besides creating user .odbc.ini files is to copy or symlink the system odbc.ini file to $GLOBUS_IODBC_PATH/etc/odbcinst.ini. Someone who understands this better may have a better answer.

3.3. Changing how clients connect to the server (for MySQL only)

If you're using MySQL and have changed how MySQL clients connect to the MySQL server in my.cnf (e.g., the port number or socket name), then you should set the option to 65536 in odbc.ini for each database. This tells MyODBC to read the client section of my.cnf to find the changed connection parameters.

[lrc1000] option = 65536
[rli1000] option = 65536

4. Installing the relational database

We include instructions for both PostgreSQL (Section 4.1, “Using PostgreSQL”) and MySQL (Section 4.2, “Using MySQL”).

4.1. Using PostgreSQL

If your relational database of choice is PostgreSQL, you need to install and configure both PostgreSQL and psqlODBC (the ODBC driver for PostgreSQL) as follows:
4.1.1. Installing PostgreSQL

4.1.1.1. Running the install commands

The commands used to install PostgreSQL 7.2.3 on the RLS development system are as follows.

```
% cd $POSTGRESSRC % ./configure --prefix=$GLOBUS_LOCATION % gmake % gmake install
```

$POSTGRESSRC is the directory where the PostgreSQL source was untarred.

4.1.1.2. Initializing PostgreSQL

Initialize PostgreSQL and start the server by running:

```
initdb -D /path/to/postgres-datadir
postmaster -D /path/to/postgres-datadir -i -o -F
```

The -o -F flags to postmaster disable fsync() calls after transactions (which, although it improves performance, raises the risk of DB corruption).

4.1.1.3. Creating the user and password

Create the database user (in our example, called dbuser) and password that RLS will use:

```
createuser -P dbuser
```

Important: Be sure to do periodic vacuum and analyze commands on all your PostgreSQL databases. The PostgreSQL documentation recommends doing this daily from cron. Failure to do this can seriously degrade performance, to the point where routine RLS operations (such as LRC to RLI soft state updates) timeout and fail. Please see the PostgreSQL documentation for further details.

4.1.2. Installing psqlODBC

Install psqlODBC by running the following commands (which were used to install psqlODBC 7.2.5):

```
% cd $PSQLODBCSRC
% setenv CPPFLAGS -I$(IODBC_INSTALLDIR)/include
% ./configure --prefix=$GLOBUS_LOCATION --enable-pthreads
% gmake
% gmake install
```

where $PSQLODBCSRC is the directory where you untarred the psqlODBC source.

Note: The configure script that comes with psqlODBC supports a --with-iodbc option. However, when the RLS developers used this it resulted in RLS servers with corrupt memory that would dump core while opening the database connection. It seems to work fine (with iODBC) without this option.

You can now continue to instructions for Installing the RLS Server. See Section 5, “Installing the RLS Server”.

4.2. Using MySQL

If your relational database of choice is MySQL, you'll need to install and configure both MySQL and the MyODBC (Connector/ODBC) packages as follows:
4.2.1. Installing MySQL

Once you’ve installed and configured MySQL you must start the database server and create the database user/password that RLS will use to connect to the database.

4.2.1.1. Starting database server

Start the database server by running:

`mysqld_safe [--defaults-file path to your my.cnf file]`

4.2.1.2. Creating the user and password

To create the database user and password that RLS will use you must run the MySQL command line tool `mysql`, and specify the following commands:

```
mysql> use mysql;
mysql> grant all on lrc1000.* to dbuser@localhost identified by 'dbpassword';
mysql> grant all on rli1000.* to dbuser@localhost identified by 'dbpassword';
```

These commands assume the username you will create for RLS is `dbuser` with password `dbpassword`, and the database(s) you will create for your LRC and/or RLI server are `lrc1000` and `rli1000`.

Creation of the LRC and/or RLI databases is covered below in Section 6, “Configuring the RLS Database”.

4.2.2. Installing MyODBC

⚠️ Important

Recommended Version: 3.51.06

Please read the note under Section 3, “Installing iODBC”.

If you cannot locate this version on a public site or mirror, you can find it here[^7].

These instructions assume that iODBC was installed in `$GLOBUS_LOCATION`. This may be changed by changing the `--with-iodbc-includes` and `--with-iodbc-libs` options or the `--with-iodbc` option.

4.2.2.1. Running install commands

Install MyODBC in `$GLOBUS_LOCATION` (you may choose a different directory if you wish, by changing the `--prefix` option to `configure` below):

```
% cd $MYODBCSRC
% ./configure --prefix=$GLOBUS_LOCATION
    --with-iodbc-includes=$GLOBUS_MYSQL_LOCATION/include/mysql
    --with-iodbc-libs=$GLOBUS_MYSQL_LOCATION/lib/mysql
    --with-mysql-includes=$GLOBUS_MYSQL_LOCATION/include/mysql
    --with-mysql-libs=$GLOBUS_MYSQL_LOCATION/lib/mysql
    --with-iodbc
    --with-odbc-ini=$ODBCINIDIR
% gmake
% gmake install
```

where:

[^7]: http://www.ist.edu/~schuler/MyODBC-3.51.06.tar.gz
• $MYODBCSRC is the directory where you untarred the MyODBC sources.

• $ODBCINIDIR is the directory where you created the odbc.ini file.

Bug: There is a bug in MyODBC version 3.51.05 and earlier. The debug code is not thread safe, and the RLS server will get a segmentation violation and die if this code is enabled. In versions 3.51.05 and later the debug code can be disabled with the configure option --without-debug. In earlier versions it is disabled by defining DBUG_OFF, as in the following example:

```
setenv CFLAGS -DBUG_OFF
```

You can now continue to instructions for installing the RLS Server. See Section 5, “Installing the RLS Server”.

5. Installing the RLS Server

Download the appropriate bundle. RLS is included as part of the Globus Toolkit bundle. See the [Globus Toolkit Development Downloads](http://www.globus.org/toolkit/downloads/development/) for a listing of available software.

RLS is installed as a part of the standard install. For basic installation instructions, see the [Installation Guide](http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html).

6. Configuring the RLS Database

RLS server configuration is specified in $GLOBUS_LOCATION/etc/globus-rls-server.conf; please see the man page for _globus-rls-server(8)_ for complete details. Some of the configuration options (such as database user/password) are mentioned below.

6.1. Creating a user and password

Create a database user that the RLS server will use to connect to the DBMS.

The database user and password you pick must be specified in the RLS server configuration file, as well as the name of the database(s) you will create (see below).

```
db_user dbuser
db_pwd dbpassword
lrc_dbname lrc1000  # optional (if LRC server)
rli_dbname rli1000  # optional (if RLI server)
```

6.2. Choosing database for RLS server

Decide which database(s) the RLS server will use (and that you will create in Section 6.4):

- If the RLS server is a Local Replica Catalog (LRC) server you, will need to create the LRC database.
- If the server is a Replica Location Index (RLI) server, you may need to create a RLI database.

An RLI server can receive updates from LRC servers in one of two forms, as _LFN_ lists (in which case the RLI database must be created) or as highly compressed Bloom filters. Since Bloom filters are so small, they are kept in memory and no database is required. An RLS server can be configured as both an LRC and RLI server.

9 http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch04.html

10 #id2846800
6.3. Configuring database schema

Configure the schema file(s) for the database(s) you will create.

GT 4.0 installed the schema files for the LRC and RLI databases in $GLOBUS_LOCATION/setup/globus.

For PostgreSQL, use:

• globus-rls-lrc-postgres.sql
• globus-rls-rli-postgres.sql

For MySQL, use:

• globus-rls-lrc-mysql.sql
• globus-rls-rli-mysql.sql

Edit these files to set the name of the database user you created for RLS and the names of the databases configured in $GLOBUS_LOCATION/etc/globus-rls-server.conf.

By default the database user is dbuser, the LRC database name is lrc1000 and the RLI database name is rli1000.

6.4. Creating the database(s)

Create the database(s) with the following commands (note once again that you do not need to create an RLI database if you are configuring an RLI server updated by Bloom filters):

For PostgreSQL, run:

```bash
createdb -O dbuser -U dbuser -W lrc1000
createdb -O dbuser -U dbuser -W rli1000
psql -W -U dbuser -d lrc1000 -f $GLOBUS_LOCATION/setup/globus/globus-rls-lrc-postgres.sql
psql -W -U dbuser -d rli1000 -f $GLOBUS_LOCATION/setup/globus/globus-rls-rli-postgres.sql
```

For MySQL, run:

```bash
mysql -p -u dbuser < $GLOBUS_LOCATION/setup/globus/globus-rls-lrc-mysql.sql
mysql -p -u dbuser < $GLOBUS_LOCATION/setup/globus/globus-rls-rli-mysql.sql
```

⚠️ Important

Before continuing, it is recommended that you first test the database configuration using the iodbc test utility provided with a typical iODBC installation.

Testing with iODBC, run:

```
% $GLOBUS_IODBC_PATH/bin/iodbc test "DSN=lrc1000;UID=dbuser;PWD=dbpassword"
iODBC Demonstration program
This program shows an interactive SQL processor
Driver Manager: 03.51.0002.0224
Driver: 03.51.06

SQL> show tables;
```
result set 1 returned 10 rows.

SQL>quit

Have a nice day.

Use the `show tables` command if you are using a MySQL database. Use the `postgresql` equivalent command if you are using a Postgresql database. Also the driver version number (03.51.06 above) will vary depending on the ODBC driver you are using.

⚠️ **Warning**

If the above test fails, then RLS will not run properly. You must have a valid database configuration before proceeding with RLS installation and configuration.

7. Configuring the RLS Server

Review the server configuration file `$GLOBUS_LOCATION/etc/globus-rls-server.conf` and change any options you want. The server man page `globus-rls-server(8)` has complete details on all the options.

A minimal configuration file for both an LRC and RLI server would be:

```
# Configure the database connection info
  db_user dbuser
  db_pwd dbpassword

# If the server is an LRC server
  lrc_server true
  lrc_dbname lrc1000

# If the server is an RLI server
  rli_server true
  rli_dbname rli1000 # Not needed if updated by Bloom filters

# Configure who can make requests of the server
  acl .*: all

# RE matching grid-mapfile users or DNs from x509 certs
```
The server uses a host certificate to identify itself to clients. By default this certificate is located in the files /etc/grid-security/hostcert.pem and /etc/grid-security/hostkey.pem. Host certificates have a distinguished name of the form /CN=host/FQDN. If the host you plan to run the RLS server on does not have a host certificate, you must obtain one from your Certificate Authority. The RLS server must be run as the same user who owns the host certificate files (typically root). The location of the host certificate files may be specified in $GLOBUSLOCATION/etc/globus-rls-server.conf:

rlscertfile path-to-cert-file # default /etc/grid-security/hostcert.pem
rlskeyfile path-to-key-file # default /etc/grid-security/hostkey.pem

It is possible to run the RLS server without authentication, by starting it with the -N option, and using URL’s of the form rlsn://server to connect to it. If authentication is enabled, RLI servers must include acl configuration options that match the identities of LRC servers that update it and that grant the rli_update permission to the LRCs.

8. Starting the RLS Server

Start the RLS Server by running:

$GLOBUS_LOCATION/sbin/SXXrls start

8.1. Notes on RLS Initialization

Please be advised (and advise other users responsible for bringing up the RLS) that the startup initialization may take a few minutes before the RLS may be accessible. The initialization involves two key operations that may consume significant resources causing the server to appear temporarily unresponsive. Users of RLS may mistakenly assume that RLS failed to startup and may kill the server and start over. Some users may fall into this in a repeated cycle, believing that the RLS is unable to startup properly.

If the RLS is configured to send compressed updates (Bloom filters) to other RLIs, the RLS startup will involve initialization of the Bloom filter representing the current contents of the local replica catalog (LRC). This step is a prerequisite before any additional operations may be allowed, therefore no client connections are permitted until the initialization is complete. In our test environment, we have seen over 30 seconds delay due to creation of the Bloom filter corresponding to 1 million LFN names on a system with Dual 1 GHz CPU and 1.5 GB RAM. You may experience greater delays at larger scales and/or when running RLS with more limited system resources.

If the RLS is configured to send uncompressed updates (LFN lists) to other RLIs, the RLS startup will not involve any additional initialization delay. However, the RLS will spawn an initial full catalog update to all RLIs it updates. Though these updates will take place on separate threads of execution after the initialization of the system, they will consume a great amount of processor activity. Depending on the volume of the local replica catalog (LRC), this processor activity may initially interfere with a client operation. In our test environment, we have seen our initial "globus-rls-admin ping..." operation may suffer a delay and timeout in 30 seconds, the second "ping" may delay for a few seconds but will successfully return, and the third and every subsequent "ping" operation will successfully return immediately throughout the duration of the update. The system exhibits the same behavior for any other client operation, such as a "globus-rls-cli query..." operation.

9. Stopping the RLS Server

Stop the RLS Server by running:

$GLOBUS_LOCATION/sbin/SXXrls stop
10. Configuring the RLS Server for the MDS2 GRIS

The server package includes a program called globus-rls-reporter that will report information about an RLS server to the MDS2 GRIS. Use this procedure to enable this program:

1. To enable Index Service reporting, add the contents of the file $GLOBUS_LOCATION/setup/globus/rls-ldif.conf to the MDS2 GRIS configuration file $GLOBUS_LOCATION/etc/grid-info-resource-ldif.conf.

2. If necessary, set your virtual organization (VO) name in $GLOBUS_LOCATION/setup/globus/rls-ldif.conf. The default value is local. The VO name is referenced twice, on the lines beginning dn: and args:

3. You must restart your MDS (GRIS) server after modifying $GLOBUS_LOCATION/etc/grid-info-resource-ldif.conf. You can use the following commands to do so:

 $GLOBUS_LOCATION/sbin/SXXgris stop
 $GLOBUS_LOCATION/sbin/SXXgris start

11. Configuring the RLS Server for the WS MDS Index Service

The server package includes a script $GLOBUS_LOCATION/libexec/aggrexec/globus-rls-aggregatorsource.pl that may be used as an Execution Aggregator Source by MDS. See GT 4.0 Index Services\(^\text{11}\) for more information on setting up and using the Execution Aggregator Source scripts in MDS. The script may be invoked as follows and will generate output in the format as depicted.

```bash
% $GLOBUS_LOCATION/libexec/aggrexec/globus-rls-aggregatorsource.pl rls://mysite
<?xml version="1.0" encoding="UTF-8"?>
<rlsStats>
  <site>rls://mysite</site>
  <version>4.0</version>
  <uptime>03:08:15</uptime>
  <serviceList>
    <service>lrc</service>
    <service>rli</service>
  </serviceList>
  <lrc>
    <updateMethodList>
      <updateMethod>lfnlist</updateMethod>
      <updateMethod>bloomfilter</updateMethod>
    </updateMethodList>
    <updatesList>
      <updates>
        <site>rls://myothersite:39281</site>
        <method>bloomfilter</method>
        <date>08/01/05</date>
      </updates>
    </updatesList>
  </lrc>
</rlsStats>
```

\(^{11}\) http://www.globus.org/toolkit/docs/4.0/info/index/
Important

Be sure to configure the security context of the container running the MDS, and be sure that the security configuration on the RLS host recognizes the MDS security context.

When following the instructions provided by the GT 4.0 Index Services\(^\text{12}\), you will need to consider the security context used by the MDS to invoke the Execution Aggregator Source script provided by RLS. Most deployments of RLS run the service with security enabled. Therefore any client connections, including administrative status operations, require authentication and authorization. In order for MDS to use the provided script to check RLS status, it must invoke the script with a valid user proxy or user certificate and key. The RLS must recognize the DN from the user certificate (i.e., the DN should be in the gridmap file).

One way to configure the MDS security context for use with RLS monitoring is to set the environment variables X509_USER_CERT and X509_USER_KEY to point to the container certificate and key. Run the MDS with these environment settings. Also, add the DN from the container certificate to the gridmap file on the host running the RLS.

Alternatively, you could modify the provided script so that it sets the environment variables to another user certificate and key (or proxy) as desired before calling the RLS.

12. RedHat 9 Incompatibility

This note applies to RedHat 9 but could also apply to other Linux distributions.

There have been occurrences of RLS servers hanging on RedHat 9 systems. The external symptoms are:

1. The server does not accept new connections from clients, with an error message similar to:

   ```
   connect(rls://XXXXX): globus_rls_client: IO timeout:
   globus_io_tcp_register_connect() timed out after 30 seconds
   ```

\(^\text{12}\) http://www.globus.org/toolkit/docs/4.0/info/index/
2. Often, the server continues to receive and send updates as configured and respond to signals. You can check this by querying other servers that interact with the one that's hung. Under gdb: All the server threads are waiting to be signaled on a condition variable. Sometimes, this is in `globus_io` functions, particularly in `globus_io_cancel()`.

12.1. Probable cause

This seems to be due to a problem in the new kernel and thread libraries of RedHat 9. A problem in `pthread_cond_wait()` causes threads not to wake up correctly.

This problem has been seen with the following kernels and glibc packages:

- **Kernels:**
 - 2.4.20-30.9
 - 2.4.20-8

- **glibc:**
 - glibc-2.3.2-27.9.7

12.2. Suggested workaround

The problems don't seem to arise when RLS is linked with older pthread libraries. This can be done as by adding a couple of lines to the RLS startup script in `$GLOBUS_LOCATION/sbin/SXXrls`, as shown:

```bash
<--- START --->
#!/bin/sh
GLOBUS_LOCATION=/opt/gt3.2
MYSQL=/opt/mysql
IODBC=/opt/iodbc
export GLOBUS_LOCATION

#RedHat 9 workaround
LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

<--- END --->
```

On i586 systems, set:

`LD_ASSUME_KERNEL=2.2.5`
Appendix B. Packaging details

1. The makefile

You do not have to build every subcomponent of this release. The makefile specifies subtargets for different functional subpieces. See the component map at GT4 Facts\(^1\) for more details.

Makefile targets

- i18n: Internationalization libraries
- prewsgram: Pre-webservices GRAM
- gridftp: GridFTP
- prewsmds: OpenLDAP-based MDS2 [source installers only]
- prews: Pre-WS GRAM, MDS2, and GridFTP
- wsjava: Java WS Core
- wsc: C WS core
- wsmds: MDS4
- wsdel: Delegation Service
- wsrft: Reliable File Transfer service
- wsgram: GRAM4
- wscas: Community Authorization Service
- wstests: Tests for java webservices
- wsctests: Tests for C webservices
- prews-test: Tests for pre-webservices components
- rls: Replica Location Service

Note that all of these targets require the "install" target also. So, for instance, to build GridFTP alone, you would run:

```
$ ./configure --prefix=/path/to/install
$ make gridftp install
```

2. The Grid Packaging Toolkit

The Globus Toolkit is packaged using the Grid Packaging Toolkit (GPT). The GPT provides a way for us to version packages and express dependencies between packages. The Makefile for the installer is automatically generated based

\(^1\) http://www.globus.org/toolkit/docs/4.0/GT4Facts/index.html
on the GPT dependencies expressed in CVS. GPT versions also allow us to release update packages for small subsets of our code.

3. Picking a flavor for a source installation

If you're building on a platform that is not auto-detected by the configure script, you will be prompted to specify a flavor for the --with-flavor= option. Typically "gcc32dbg" will work as a flavor to build 32-bit binaries using gcc. If you want to force a 64bit build, "gcc64dbg" should work.

Some platforms have better support from their native compilers, so you can use "vendorcc32dbg" to build using the native cc. Similarly, "vendorcc64dbg" will force a 64bit build instead.

4. Using globus-makefile-header with a binary distribution

We use a package called "globus_core" to detect the compiler and platform settings of the computer that the Toolkit is installed on. This package is excluded from binary distributions, because the compiler settings on your machine are likely to be different from those used on the machine that built the binaries.

If you need to install a source update into a binary installation, globus_core will automatically be built for you. If you're building something using "globus-makefile-header", though, you will need to install globus_core yourself. Install it with the following command:

$ $GLOBUS_LOCATION/sbin/gpt-build -nosrc <flavor>

Where flavor is the flavor you're passing to globus-makefile-header.
Java WS Core Glossary

A
Apache Axis
The SOAP engine implementation used within the Globus Toolkit. See the Apache Axis website\(^2\) for details.

C
client-config.wsdd
Axis client-side WSDD configuration file. It contains information about the type mappings, the transport and other handlers.
See Also Apache Axis, Web Services Deployment Descriptor (WSDD).

J
JNDI
Java Naming and Directory Interface (JNDI) API are used to access a central transient container registry. The registry is mainly used for discovery of the ResourceHome implementations. However, the registry can also be used store and retrieve arbitrary information. The jndi-config.xml files are used to populate the registry. See the JNDI Tutorial\(^3\) for details.
See Also jndi-config.xml, ResourceHome.

jndi-config.xml
It is a XML-based configuration file used to populate the container registry accessible via the JNDI API. See the JNDI details\(^4\) for more information.
See Also JNDI, ResourceHome, XML.

G
GAR
The GAR (Grid Archive) file is a single file which contains all the files and information that the container needs to deploy a service. See GAR details\(^5\) for more information.

O
operation provider
A reusable Java component that implements one or more web service functions. A web service can be composed of one or more operation providers. See Operation Provider\(^6\) for more information.

R
ResourceHome
The resources are managed and discovered via ResourceHome implementations. The ResourceHome implementations can also be responsible for creating new re-

\(^2\) http://ws.apache.org/axis/
\(^3\) http://java.sun.com/products/jndi/tutorial/
\(^4\) ../../common/javawscore/developer-index.html#s-javawscore-developer-JNDIDetails
\(^5\) ../../common/javawscore/developer-index.html#s-javawscore-developer-gardetails
\(^6\) ../../common/javawscore/developer-index.html#s-javawscore-developer-OperationProvider
sources, performing operations on a set of resources at a time, etc. ResourceHomes are configured in JNDI and are associated with a particular web service. See Also JNDI.

S

server-config.wsdd

Axis server-side WSDD configuration file. It contains information about the services, the type mappings and various handlers. See Also Apache Axis, Web Services Deployment Descriptor (WSDD).

SOAP

SOAP provides a standard, extensible, composable framework for packaging and exchanging XML messages between a service provider and a service requester. SOAP is independent of the underlying transport protocol, but is most commonly carried on HTTP. See the SOAP specifications\(^7\) for details.

W

Web Services Deployment Descriptor (WSDD)

Axis XML-based configuration file. See Also Apache Axis, client-config.wsdd, server-config.wsdd, XML.

WS Addressing (WSA)

The WS-Addressing specification defines transport-neutral mechanisms to address Web services and messages. Specifically, this specification defines XML elements to identify Web service endpoints and to secure end-to-end endpoint identification in messages. See the W3C WS Addressing Working Group\(^8\) for details.

WS Notification (WSN)

The WS-Notification family of specifications define a pattern-based approach to allowing Web services to disseminate information to one another. This framework comprises mechanisms for basic notification (WS-Notification), topic-based notification (WS-Topics), and brokered notification (WS-BrokeredNotification). See the OASIS Web Services Notification (WSN) TC\(^9\) for details.

WS Resource Framework (WS-RF)

The WS Resource Framework (WSRF) specifications define a generic and open framework for modeling and accessing stateful resources using Web services. This framework comprises mechanisms to describe views on the state (WS-Resource-Properties), to support management of the state through properties associated with the Web service (WS-ResourceLifetime), to describe how these mechanisms are extensible to groups of Web services (WS-ServiceGroup), and to deal with faults (WS-BaseFaults). See the OASIS Web Services Notification (WSRF) TC\(^10\) for details.

WSDL

WSDL is an XML document for describing Web services. Standardized binding conventions define how to use WSDL in conjunction with SOAP and other messaging substrates. WSDL interfaces can be compiled to generate proxy code that constructs messages and manages communications on behalf of the client application. The proxy automatically maps the XML message structures into native language objects that can be directly manipulated by the application. The proxy frees the developer from having to understand and manipulate XML. See the WSDL 1.1 specification\(^11\) for details.

\(^7\) http://www.w3.org/TR/soap/
\(^8\) http://www.w3.org/2002/ws/addr/
\(^9\) http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
\(^10\) http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
\(^11\) http://www.w3.org/TR/wsd1
See Also XML, SOAP.

WS-I Basic Profile

The WS-I Basic Profile\(^{12}\) specification is a set of recommendations on how to use the different web services specifications such as SOAP, WSDL, etc. to maximize interoperability.

See Also WSDL, SOAP.

X

XML

Extensible Markup Language (XML) is standard, flexible, and extensible data format. See the W3C XML site\(^{13}\) for details.

XPath

XPath is a language for finding information in an XML document. XPath is used to navigate through elements and attributes in an XML document. See the XPath specification\(^{14}\) for details.

\(^{12}\) http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

\(^{13}\) http://www.w3.org/XML/

\(^{14}\) http://www.w3.org/TR/xpath
Security Glossary

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Authority (CA)</td>
<td>An entity that issues certificates.</td>
</tr>
<tr>
<td>CA Certificate</td>
<td>The CA’s certificate. This certificate is used to verify signature on certificates issued by the CA. GSI typically stores a given CA certificate in <code>/etc/grid-security/certificates/<hash>.0</code>, where <code><hash></code> is the hash code of the CA identity.</td>
</tr>
<tr>
<td>CA Signing Policy</td>
<td>The CA signing policy is used to place constraints on the information you trust a given CA to bind to public keys. Specifically it constrains the identities a CA is trusted to assert in a certificate. In GSI the signing policy for a given CA can typically be found in <code>/etc/grid-security/certificates/<hash>.signing_policy</code>, where <code><hash></code> is the hash code of the CA identity. For more information see [add link].</td>
</tr>
<tr>
<td>certificate</td>
<td>A public key and information about the certificate owner bound together by the digital signature of a CA. In the case of a CA certificate the certificate is self signed, i.e. it was signed using its own private key.</td>
</tr>
<tr>
<td>Certificate Revocation List (CRL)</td>
<td>A list of revoked certificates generated by the CA that originally issued them. When using GSI this list is typically found in <code>/etc/grid-security/certificates/<hash>.r0</code>, where <code><hash></code> is the hash code of the CA identity.</td>
</tr>
</tbody>
</table>
| certificate subject | A identifier for the certificate owner, e.g.
```
/DC=org/DC=doegrids/OU=People/CN=John Doe 123456
```
. The subject is part of the information the CA binds to a public key when creating a certificate. |
| credentials | The combination of a certificate and the matching private key. |

E

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Entity Certificate (EEC)</td>
<td>A certificate belonging to a non-CA entity, e.g. you, me or the computer on your desk.</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAA Configuration File</td>
<td>A file that configures the Generic Authorization and Access control GAA libraries. When using GSI this file is typically found in <code>/etc/grid-security/gsi-gaa.conf</code>.</td>
</tr>
<tr>
<td>grid map file</td>
<td>A file containing entries mapping certificate subjects to local user names. This file can also serve as a access control list for GSI enabled services and is typically found in <code>/etc/grid-security/grid-mapfile</code>. For more information see the Gridmap file.</td>
</tr>
</tbody>
</table>

15 http://www.globus.org/toolkit/docs/4.0/security/prewsaa/Pre_WS_AA_Public_Interfaces.html#prewsaa-env-gridmapfile
Security Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>grid security directory</td>
<td>The directory containing GSI configuration files such as the GSI authorization callout configuration and GAA configuration files. Typically this directory is <code>/etc/grid-security</code>. For more information see Grid security directory.</td>
</tr>
<tr>
<td>GSI authorization callout configuration file</td>
<td>A file that configures authorization callouts to be used for mapping and authorization in GSI enabled services. When using GSI this file is typically found in <code>/etc/grid-security/gsi-authz.conf</code>.</td>
</tr>
<tr>
<td>host certificate</td>
<td>An EEC belonging to a host. When using GSI this certificate is typically stored in <code>/etc/grid-security/hostcert.pem</code>. For more information on possible host certificate locations see the Credentials.</td>
</tr>
<tr>
<td>host credentials</td>
<td>The combination of a host certificate and its corresponding private key.</td>
</tr>
<tr>
<td>private key</td>
<td>The private part of a key pair. Depending on the type of certificate the key corresponds to it may typically be found in <code>$HOME/.globus/userkey.pem</code> (for user certificates), <code>/etc/grid-security/hostkey.pem</code> (for host certificates), or <code>/etc/grid-security/<service>/<service>key.pem</code> (for service certificates). For more information on possible private key locations see the Credentials.</td>
</tr>
<tr>
<td>proxy certificate</td>
<td>A short lived certificate issued using a EEC. A proxy certificate typically has the same effective subject as the EEC that issued it and can thus be used in its stead. GSI uses proxy certificates for single sign on and delegation of rights to other entities. For more information about types of proxy certificates and their compatibility in different versions of GT, see http://dev.globus.org/wiki/Security/ProxyCertTypes.</td>
</tr>
<tr>
<td>proxy credentials</td>
<td>The combination of a proxy certificate and its corresponding private key. GSI typically stores proxy credentials in <code>/tmp/x509up_u<uid></code>, where <code><uid></code> is the user id of the proxy owner.</td>
</tr>
<tr>
<td>public key</td>
<td>The public part of a key pair used for cryptographic operations (e.g. signing, encrypting).</td>
</tr>
<tr>
<td>service certificate</td>
<td>A EEC for a specific service (e.g. FTP or LDAP). When using GSI this certificate is typically stored in <code>/etc/grid-security/<service>/<service>cert.pem</code>. For more information on possible service certificate locations see the Credentials.</td>
</tr>
<tr>
<td>service credentials</td>
<td>The combination of a service certificate and its corresponding private key.</td>
</tr>
</tbody>
</table>

16. http://www.globus.org/toolkit/docs/4.0/security/prewsaa/Pre_WS_AA_Public_Interfaces.html#prewsaa-env-gridsecurity
17. http://www.globus.org/toolkit/docs/4.0/security/prewsaa/Pre_WS_AA_Public_Interfaces.html#prewsaa-env-credentials
18. http://www.globus.org/toolkit/docs/4.0/security/prewsaa/Pre_WS_AA_Public_Interfaces.html#prewsaa-env-credentials
19. http://www.globus.org/toolkit/docs/4.0/security/prewsaa/Pre_WS_AA_Public_Interfaces.html#prewsaa-env-credentials
<table>
<thead>
<tr>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>transport-level security</td>
<td>Uses transport-level security (TLS) mechanisms.</td>
</tr>
<tr>
<td>trusted CAs directory</td>
<td>The directory containing the CA certificates and signing policy files of the CAs trusted by GSI. Typically this directory is <code>/etc/grid-security/certificates</code>. For more information see Grid security directory.</td>
</tr>
<tr>
<td>user certificate</td>
<td>A EEC belonging to a user. When using GSI this certificate is typically stored in <code>$HOME/.globus/usercert.pem</code>. For more information on possible user certificate locations see Credentials.</td>
</tr>
<tr>
<td>user credentials</td>
<td>The combination of a user certificate and its corresponding private key.</td>
</tr>
</tbody>
</table>
GridFTP Glossary

C

client

FTP is a command/response protocol. The defining characteristic of a client is that it is the process sending the commands and receiving the responses. It may or may not take part in the actual movement of data.

See Also client/server transfer, third party transfers.

client/server transfer

In a client/server transfer, there are only two entities involved in the transfer, the client entity and the server entity. We use the term entity here rather than process because in the implementation provided in GT4, the server entity may actually run as two or more separate processes.

The client will either move data from or to his local host. The client will decide whether or not he wishes to connect to the server to establish the data channel or the server should connect to him (MODE E dictates who must connect).

If the client wishes to connect to the server, he will send the PASV (passive) command. The server will start listening on an ephemeral (random, non-privileged) port and will return the IP and port as a response to the command. The client will then connect to that IP/Port.

If the client wishes to have the server connect to him, the client would start listening on an ephemeral port, and would then send the PORT command which includes the IP/Port as part of the command to the server and the server would initiate the TCP connect. Note that this decision has an impact on traversing firewalls. For instance, the client's host may be behind a firewall and the server may not be able to connect.

Finally, now that the data channel is established, the client will send either the RETR “filename” command to transfer a file from the server to the client (GET), or the STOR “filename” command to transfer a file from the client to the server (PUT).

See Also extended block mode (MODE E).

command/response

Both FTP and GridFTP are command/response protocols. What this means is that once a client sends a command to the server, it can only accept responses from the server until it receives a response indicating that the server is finished with that command. For most commands this is not a big deal. For instance, setting the type of the file transfer to binary (called "I" for "image in the protocol"), simply consists of the client sending TYPE I and the server responding with 220 OK. Type set to I. However, the SEND and RETR commands (which actually initiate the movement of data) can run for a long time. Once the command is sent, the client’s only options are to wait until it receives the completion reply, or kill the transfer.

concurrency

When speaking of GridFTP transfers, concurrency refers to having multiple files in transit at the same time. They may all be on the same host or across multiple hosts. This is equivalent to starting up “n” different clients for “n” different files, and having them all running at the same time. This can be effective if you have many small files to move. The Reliable File Transfer (RFT),\(^\text{22}\) service utilizes concurrency to improve its performance.

\(^{22}\)http://www.globus.org/toolkit/docs/4.0/data/rft/
GridFTP uses two channels:

- One of the channels, called the control channel, is used for sending commands and responses. It is low bandwidth and is encrypted for security reasons.

- The second channel is known as the data channel. Its sole purpose is to transfer the data. It is high bandwidth and uses an efficient protocol.

By default, the data channel is authenticated at connection time, but no integrity checking or encryption is performed due to performance reasons. Integrity checking and encryption are both available via the client and libraries.

Note that in GridFTP (not FTP) the data channel may actually consist of several TCP streams from multiple hosts.

See Also parallelism, striping.

MODE E is a critical GridFTP component because it allows for out of order reception of data. This in turn, means we can send the data down multiple paths and do not need to worry if one of the paths is slower than the others and the data arrives out of order. This enables parallelism and striping within GridFTP. In MODE E, a series of “blocks” are sent over the data channel. Each block consists of:

- an 8 bit flag field,
- a 64 bit field indicating the offset in the transfer,
- and a 64 bit field indicating the length of the payload,
- followed by length bytes of payload.

Note that since the offset and length are included in the block, out of order reception is possible, as long as the receiving side can handle it, either via something like a seek on a file, or via some application level buffering and ordering logic that will wait for the out of order blocks. [TODO: LINK TO GRAPHIC]

See Also parallelism, striping.

This protocol is still under development. It is intended to address a number of the deficiencies found in MODE E. For instance, it will have explicit negotiation for use of a data channel, thus removing the race condition and the requirement for the sender to be the connector. This will help with firewall traversal. A method will be added to allow the filename to be provided prior to the data channel connection being established to help large data farms better allocate resources. Other additions under consideration include block checksumming, resends of blocks that fail checksums, and inclusion of a transfer ID to allow pipelining and de-multiplexing of commands.

See Also extended block mode (MODE E).
MODE command

In reality, GridFTP is not one protocol, but a collection of several protocols. There is a protocol used on the control channel, but there is a range of protocols available for use on the data channel. Which protocol is used is selected by the MODE command. Four modes are defined: STREAM (S), BLOCK (B), COMPRESSED (C) in RFC 959 for FTP, and EXTENDED BLOCK (E) in GFD.020 for GridFTP. There is also a new data channel protocol, or mode, being defined in the GGF GridFTP Working group which, for lack of a better name at this point, is called MODE X.

See Also extended block mode (MODE E), improved extended block mode (MODE X), stream mode (MODE S).

network end points

A network endpoint is generally something that has an IP address (a network interface card). It is a point of access to the network for transmission or reception of data. Note that a single host could have multiple network end points if it has multiple NICs installed (multi-homed). This definition is necessary to differentiate between parallelism and striping.

See Also parallelism, striping.

parallelism

When speaking about GridFTP transfers, parallelism refers to having multiple TCP connections between a single pair of network endpoints. This is used to improve performance of transfers on connections with light to moderate packet loss.

server

The compliment to the client is the server. Its defining characteristic is that it receives commands and sends responses to those commands. Since it is a server or service, and it receives commands, it must be listening on a port somewhere to receive the commands. Both FTP and GridFTP have IANA registered ports. For FTP it is port 21, for GridFTP it is port 2811. This is normally handled via inetd or xinetd on Unix variants. However, it is also possible to implement a daemon that listens on the specified port. This is described more fully in http://www.globus.org/toolkit/docs/4.0/data/gridftp/developer-index.html#gridftp-developer-archde in the GridFTP Developer's Guide.

See Also client.

stream mode (MODE S)

The only mode normally implemented for FTP is MODE S. This is simply sending each byte, one after another over the socket in order, with no application level framing of any kind. This is the default and is what a standard FTP server will use. This is also the default for GridFTP.

striping

When speaking about GridFTP transfers, striping refers to having multiple network endpoints at the source, destination, or both participating in the transfer of the same file. This is normally accomplished by having a cluster with a parallel shared file system. Each node in the cluster reads a section of the file and sends it over the network. This mode of transfer is necessary if you wish to transfer a single file.
faster than a single host is capable of. This also tends to only be effective for large files, though how large depends on how many hosts and how fast the end-to-end transfer is. Note that while it is theoretically possible to use NFS for the shared file system, your performance will be poor, and would make using striping pointless.

T

third party transfers

In the simplest terms, a third party transfer moves a file between two GridFTP servers.

The following is a more detailed, programmatic description.

In a third party transfer, there are three entities involved. The client, who will only orchestrate, but not actually take place in the data transfer, and two servers one of which will be sending data to the other. This scenario is common in Grid applications where you may wish to stage data from a data store somewhere to a supercomputer you have reserved. The commands are quite similar to the client/server transfer. However, now the client must establish two control channels, one to each server. He will then choose one to listen, and send it the PASV command. When it responds with the IP/port it is listening on, the client will send that IP/port as part of the PORT command to the other server. This will cause the second server to connect to the first server, rather than the client. To initiate the actual movement of the data, the client then sends the RETR “filename” command to the server that will read from disk and write to the network (the “sending” server) and will send the STOR “filename” command to the other server which will read from the network and write to the disk (the “receiving” server).

See Also client/server transfer.
RLS Glossary

B

Bloom filter

Compression scheme used by the Replica Location Service (RLS) that is intended to reduce the size of soft state updates between Local Replica Catalogs (LRCs) and Replica Location Index (RLI) servers. A Bloom filter is a bit map that summarizes the contents of a Local Replica Catalog (LRC). An LRC constructs the bit map by applying a series of hash functions to each logical name registered in the LRC and setting the corresponding bits.

L

Local Replica Catalog (LRC)

Stores mappings between logical names for data items and the target names (often the physical locations) of replicas of those items. Clients query the LRC to discover replicas associated with a logical name. Also may associate attributes with logical or target names. Each LRC periodically sends information about its logical name mappings to one or more RLIs.

logical file name

A unique identifier for the contents of a file.

logical name

A unique identifier for the contents of a data item.

P

physical file name

The address or the location of a copy of a file on a storage system.

R

Replica Location Index (RLI)

Collects information about the logical name mappings stored in one or more Local Replica Catalogs (LRCs) and answers queries about those mappings. Each RLI periodically receives updates from one or more LRCs that summarize their contents.

Replica Location Service (RLS)

A distributed registry that keeps track of where replicas exist on physical storage systems. The job of the RLS is to maintain associations, or mappings, between logical names for data objects and one or more target or physical names for replicas. Users or services register data items in the RLS and query RLS servers to find replicas. (RLS)

RLS attribute

Descriptive information that may be associated with a logical or target name mapping registered in a Local Replica Catalog (LRC). Clients can query the LRC to discover logical names or target names that have specified RLS attributes.

T

target name

The address or location of a copy of a data item on a storage system.
MDS4 Glossary

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregator Framework</td>
<td>A software framework used to build services that collect and aggregate data. MDS4 Services (such as the Index and Trigger services) are built on the Aggregator Framework, and are sometimes called Aggregator Services.</td>
</tr>
<tr>
<td>aggregator services</td>
<td>Services that are built on the Aggregator Framework, such as the MDS4 Index Service and Trigger Service. See Also Aggregator Framework, Index Service, Trigger Service.</td>
</tr>
<tr>
<td>aggregator source</td>
<td>A Java class that implements an interface (defined as part of the Aggregator Framework) to collect XML-formatted data. MDS4 contains three aggregator sources: the query aggregator source, the subscription aggregator source, and the execution aggregator source. See Also query aggregator source, subscription aggregator source, execution aggregator source.</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>execution aggregator source</td>
<td>An Aggregator Source (included in MDS4) that executes an administrator-supplied program to collect information and make it available to an Aggregator Service such as the Index Service. See Also aggregator source.</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>

H

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>

I

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index Service</td>
<td>An aggregator service that serves as a registry similar to UDDI, but much more flexible. Indexes collect information and publish that information as WSRF resource properties. See Also aggregator services.</td>
</tr>
<tr>
<td>information provider</td>
<td>A "helper" software component that collects or formats resource information, for use by an aggregator source or by a WSRF service when creating resource properties.</td>
</tr>
<tr>
<td>Q</td>
<td>query aggregator source</td>
</tr>
<tr>
<td>S</td>
<td>subscription aggregator source</td>
</tr>
<tr>
<td>T</td>
<td>Trigger Service</td>
</tr>
<tr>
<td>W</td>
<td>WebMDS</td>
</tr>
</tbody>
</table>
WS GRAM Glossary

B

batch scheduler
See scheduler.

C

Condor
A job scheduler mechanism supported by GRAM. See http://www.cs.wisc.edu/condor/.

G

globusrun-ws
A command line program used to submit jobs to a WS GRAM service. See the commandline reference page at: http://www.globus.org/toolkit/docs/4.0/exe-

tion/wsgram/rn01re01.html

Grid Resource allocation and Management (GRAM)
Web Services Grid Resource Allocation and Management (WS GRAM) component comprises a set of WSRF-compliant Web services to locate, submit, monitor, and cancel jobs on Grid computing resources. WS GRAM is not a job scheduler, but rather a set of services and clients for communicating with a range of different batch/cluster job schedulers using a common protocol. WS GRAM is meant to address a range of jobs where reliable operation, stateful monitoring, credential management, and file staging are important.

J

job description
Term used to describe a WS GRAM job for GT4.

job scheduler
See scheduler.

L

LSF
A job scheduler mechanism supported by GRAM.
http://www.platform.com/Products/Platform.LSF.Family/Platform.LSF/

M

meta-scheduler
A program that typically operates at a higher level than a job scheduler (typically, above the GRAM level). It schedules and submits jobs to GRAM services.

Managed Executable Job Service (MEJS)
[FIXME]

Managed Job Factory Service (MJFS)
[FIXME]
<table>
<thead>
<tr>
<th>Managed Multi Job Service (MMJS)</th>
<th>[FIXME]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMJS subjob</td>
<td>One of the executable jobs in a multijob rendezvous.</td>
</tr>
<tr>
<td>multijob</td>
<td>A job that is itself composed of several executable jobs; these are processed by the MMJS subjob. See Also MMJS subjob.</td>
</tr>
<tr>
<td>multijob rendezvous</td>
<td>A mechanism used by GRAM to synchronize between job processes in a multiprocess job and between.</td>
</tr>
<tr>
<td>P</td>
<td>Portable Batch System (PBS) A job scheduler mechanism supported by GRAM. http://www.openpbs.org</td>
</tr>
<tr>
<td>R</td>
<td>Resource Specification Language (RSL) Term used to describe a GRAM job for GT2 and GT3. (Note: This is not the same as RLS - the Replica Location Service)</td>
</tr>
<tr>
<td>S</td>
<td>scheduler Term used to describe a job scheduler mechanism to which GRAM interfaces. It is a networked system for submitting, controlling, and monitoring the workload of batch jobs in one or more computers. The jobs or tasks are scheduled for execution at a time chosen by the subsystem according to an available policy and availability of resources. Popular job schedulers include Portable Batch System (PBS), Platform LSF, and IBM LoadLeveler. scheduler adapter The interface used by GRAM to communicate/interact with a job scheduler mechanism. In GT4 this is both the perl submission scripts and the SEG program. See Also scheduler. Scheduler Event Generator (SEG) [FIXME] superuser do (sudo) Allows a system administrator to give certain users (or groups of users) the ability to run some (or all) commands as root or another user while logging the commands and arguments. http://www.courtesan.com/sudo/</td>
</tr>
<tr>
<td>U</td>
<td>Universally Unique Identifier (UUID) Identifier that is immutable and unique across time and space.</td>
</tr>
</tbody>
</table>