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Abstract

Grid technologies enable large-scale sharing of re-
sources within formal or informal consortia of individu-
als and/or institutions: what are sometimes called virtual
organizations. In these settings, the discovery, characteri-
zation, and monitoring of resources, services, and compu-
tations can be challenging due to the considerable diver-
sity, large numbers, dynamic behavior, and geographical
distribution of the entities in which a user might be inter-
ested. Hence, information servicesare a vital part of any
Grid software infrastructure, providing fundamental mech-
anisms for discovery and monitoring, and thus for plan-
ning and adapting application behavior. We present here
an information services architecture that addresses perfor-
mance, security, scalability, and robustness requirements.
Our architecture defines low-level enquiryand registration
protocols that make it easy to incorporate individual enti-
ties into information structures, including aggregate direc-
tories supporting different query languages and discovery
strategies. These protocols can also be combined with other
Grid protocols to construct additional higher-level services
and capabilities such as brokering, monitoring, fault detec-
tion, and troubleshooting. Our architecture has been im-
plemented as MDS-2, which forms part of the Globus Grid
toolkit and has been widely deployed and applied.

1. Introduction

Grid computing technologies enable wide-spread shar-
ing and coordinated use of networked resources [15]. Shar-
ing relationships may be static and long-lived—e.g., among
the major resource centers of a company or university—

�Published in: Proc. 10th IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press, 2001.

or highly dynamic: e.g., among the evolving membership
of a scientific collaboration [17]. In either case, the fact
that users typically have little or no knowledge of the re-
sources contributed by participants in the “virtual organiza-
tion” (VO) poses a significant obstacle to their use. For this
reason, information services designed to support the ini-
tial discovery and ongoing monitoring of the existence and
characteristics of resources, services, computations, and
other entities are a vital part of a Grid system [13].

Such information services find uses in a variety of Grid
scenarios. The following examples illustrate but do not
exhaust the range of applications that rely on information
services, and the variety of information sources and infor-
mation access and management methods that are associated
with these applications [13, 30, 36, 11, 34].

A service discovery service records the identity and es-
sential characteristics of “services” available to community
members. Such a discovery service might enable a physi-
cist to determine that a new university that has just joined
his consortium has 100 new CPUs available for approved
use. Here, information sources are relatively static and the
information itself relates primarily to availability.

A superscheduler routes computational requests to the
“best” available computer in a Grid containing multiple
high-end computers, where “best” can encompass issues of
architecture, installed software, performance, availability,
and policy. Here, information sources are computers, and
information can include both relatively static information
such as system configuration (architecture, OS version, ac-
cess policy) and more dynamic information such as instan-
taneous load and predictions of future availability [40, 10].

A replica selection service within a data grid responds
to requests for the “best” copy of files that are replicated
on multiple storage systems. Here, information sources can
once again include system configuration, instantaneous per-
formance, and predictions, but for storage systems and net-
works rather than computers.
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An application adaptation agent monitors both a run-
ning application and external resource availability and mod-
ifies application behavior (e.g., reduces accuracy, changes
algorithms) and/or its resource consumption (e.g., migrates
to other resources) if, due to changes in resource status or
application behavior, these changes are thought likely to
improve performance. Information sources include various
components of both the application and the underlying exe-
cution environment.

A troubleshooting service monitors Grid resources,
looking for anomalous behaviors such as excessive load or
extended failure of critical services. Here, the information
sources can be arbitrary; the information that is of interest is
determined by troubleshooter heuristics and can be highly
dynamic.

A performance diagnosis tool, invoked by a user when
anomalous behavior is detected, discovers what information
sources are associated with an application and its resources
(e.g., application sensors, network sensors, historical infor-
mation sources) and accesses these information sources as
it seeks to diagnose the poor performance.

These examples differ greatly in terms of the nature of
the information sources (physical characteristics, location,
dynamicity, sensitivity), the demands placed on those in-
formation sources (e.g., access rates, query vs. subscribe,
accuracy demands), and the ways in which information is
employed (e.g., discovery, brokering, monitoring, diagno-
sis, adaptation). Nevertheless, in each case we see a similar
structure: one or more consumers (users or programs) wish
to obtain information from one or more producers. Mech-
anisms are required that allow consumers and producers to
discover each other and that subsequently allow informa-
tion to flow between producers and consumers.We show in
the following that it is feasible to treat these different cases
within a single, consistent framework; we argue that there
are significant advantages to so doing, due to the inevitable
need to combine aspects of these and other scenarios in var-
ious ways.

The design of information services that address these
requirements is made challenging by the diversity of re-
sources involved, the range of queries required, and the dy-
namic nature of VO membership and resource status. Exist-
ing technologies do not address these requirements. Direc-
tory services such as X.500 [1], LDAP [21], and UDDI [2]
do not address explicitly the dynamic addition and deletion
of information sources; in the case of X.500 and LDAP,
there is also an assumption of a well-defined hierarchical
organization, and current implementations tend not to sup-
port dynamic data well. Metadirectory services permit cou-
pling multiple information sources, but otherwise inherit
the quality of their database engine. Service discovery ser-
vices [9, 39, 29, 31] rely on multicast to scope requests,
which is inappropriate when virtual and physical organiza-
tional structures do not correspond. Monitoring and event
systems [36, 30, 11, 6] support information delivery, us-

ing disparate protocols, but not the scalable discovery of
information sources. Our architecture supports extensions
for special purpose (e.g., high data rate) transfer protocols,
and so can serve as an integrating framework for monitor-
ing systems, as envisioned in the Grid Monitoring Architec-
ture [34].

We present here an information service architecture that
addresses the unique requirements of Grid environments.
Our architecture consists of two basic elements:

� A large, distributed collection of genericinformation
providers provide access to information about individ-
ual entities, via local operations or gateways to other
information sources (e.g., SNMP queries). Informa-
tion is structured in term of a standard data model,
taken from LDAP: an entity is described by a set of
“objects” comprised of typed attribute-value pairs.

� Higher-level services, collect, manage, index, and/or
respond to information provided by one or more infor-
mation providers. We distinguish in particularaggre-
gate directory services, which facilitate resource dis-
covery and monitoring for VOs by implementing both
generic and specialized views and search methods for
a collection of resources. Other higher-level services
can use this information and/or information obtained
directly from providers for the purposes of brokering,
monitoring, troubleshooting, etc.

Interactions between higher-level services (or users) and
providers are defined in terms of two basic protocols: a
soft-stateregistration protocol for identifying entities par-
ticipating in the information service, and anenquiry proto-
col for retrieval of information about those entities, whether
via query or subscription. In brief, a provider uses the reg-
istration protocol to notify higher-level services of its ex-
istence; a higher-level service uses the enquiry protocol to
obtain information about the entities known to a provider,
which it merges into its aggregate view. Integration with
the Grid Security Infrastructure (GSI) [16] provides forau-
thentication andaccess control to information.

Our architecture has a number of desirable features.
The separation of concerns between information retrieval,
on the one hand, and discovery and monitoring, on the
other, means that a wide variety of discovery and moni-
toring strategies can be supported—implementing different
tradeoffs between query language expressiveness, informa-
tion timeliness, and cost—without modifying the various
resources and services that comprise the Grid. (Those com-
ponents need simply to speak the enquiry and registration
protocols, or be in communication with a service that does
so on their behalf.) The distributed architecture and use of
soft-state registration makes the system highly fault toler-
ant: a component failure or network partition effects only
those components that fail or are separated from the ob-
server.
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Figure 1. Distributed virtual organizations. Users in VO-A and VO-B have access to partially overlap-
ping resources. While VO-B is split by network failure, it should operate as two disjoint fragments.

Our implementation of this architecture, MDS-2, forms
part of the Globus Toolkit of Grid services [14, 17]. MDS-
2 supersedes MDS-1 [13], which pioneered the use of Grid
information service concepts but did not address all require-
ments identified here. MDS-2 provides a configurable in-
formation provider component called a Grid Resource In-
formation Service (GRIS) and a configurable aggregate di-
rectory component called a Grid Index Information Service
(GIIS). MDS-2 has been deployed since June 2000 and we
now have significant positive experience in operational set-
tings in large, multi-institutional Grids.

In the rest of this paper, we first review our requirements,
then describe the various elements of our architecture. Next,
we discuss security, our implementation, and approaches to
system configuration. We conclude with a discussion of re-
lated work and future directions.

2. Grid Information Service Requirements

The requirements of any Grid based information system
are driven by basic properties of the Grid environment. In-
formation sources are necessarily distributed and individual
sources are subject to failure. The total of number of infor-
mation providers can be large, and both the types of infor-
mation sources and the ways in which information is used
can be highly varied. We examine the impact of each of
these properties on information service requirements.

2.1 Distribution of Information Providers

One consequence of distribution is that we cannot in gen-
eral provide users with accurate information: any informa-
tion delivered to a user will necessarily be “old.” Since
all information to which a Grid information service pro-
vides access is, at some timescale, dynamic, the state of
the system component on which information is being pro-

vided may have changed, potentially rendering the infor-
mation invalid. Because of the local policy aspect of Grid
environments, it can be expensive if not impossible to de-
lay changes in distributed system state until the informa-
tion has been delivered and processed by remote requestors.
Thus, we require that information producers should explic-
itly model the currency and confidence of their informa-
tion, for example via timestamps and time-to-live meta-
data. This approach allows users and delivery components
to manage data in a manner that is appropriate for its degree
of dynamism. We also require that an information service
transport information as rapidly and efficiently as possible
from producer to consumer.

The above discussion illustrates that the distribution of
information sources places restrictions on the types of in-
formation that are both meaningful and feasible to collect.
A further ramification results in an important requirement
on the types of behavior an information service shouldnot
have. We argue that we should not in general provide users
with a consistent view of global state [8]. Even when ac-
curate information could be guaranteed by the use of trans-
action mechanisms [22] and distributed snapshots, we be-
lieve that it is inappropriate to provide such mechanisms
as information service primitives. Such mechanisms do
not scale well to large numbers of providers. In summary,
we require that a Grid information service should focus
only onefficient delivery of state information from a single
source.If applications require accurate local state or consis-
tent global state, this functionality can be achieved via other
control functions that provide necessary atomic operations
at a higher cost.

2.2. Managing Failure

In distributed environments, both individual entities and
the networks that provide access to those entities may fail.
We hence require that information services behave robustly
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Figure 2. Architecture overview. Using the GRid Information protocol (GRIP), users can query ag-
gregate directory services to discover relevant entities, and/or query information providers to obtain
information about individual entities. Description services are normally hosted by a Grid entity
directly, or by a front-end gateway serving the entity.

in the face of failure of any of the components on which the
service is built. We define robust behavior to mean that the
failure of any one component should not prevent obtaining
information about other components of the system. Users
should have as much partial or even inconsistent informa-
tion as is available (see partitioned “VO-B” in Figure 1).

This requirement has two ramifications. First, an infor-
mation service should be as distributed and decentralized
as possible, with providers located near (e.g., on) the enti-
ties they describe. This strategy increases the likelihood of
obtaining information about available resources. Second, it
means that information system components should be con-
structed under the assumption that failure is the rule, not the
exception. This means not only making sure that unavail-
able or unreachable services and resources do not interfere
with other functions, but also providing a means to gain a
timely awareness of when failures have occured. It is this
second aspect of system behavior that motivates our use of
soft-state registration protocols described in Section 4.3.

2.3. Diversity in Information Service Components

A new VO may involve many entities and have unique
requirements for discovery and monitoring. Yet it is typi-
cally impractical to require that each resource, service, etc.,
be modified or reconfigured for VO operation. Instead,
we would like to be able to define once, ahead of time,
the discovery and enquiry mechanisms that must be sup-
ported by any Grid entity. These mechanisms should then
be sufficient to support a rich set of discovery and mon-
itoring strategies—including hierarchical resource group-
ings; alternative resource naming mechanisms; and search
procedures—while allowing users, system operators, and
resource providers to control overheads, by for example
trading off cost and timeliness.

Another aspect of diversity concerns the policies under

which information providers are operated and the ways in
which information can be used. Components of a Grid
information service may span multiple administrative do-
mains. Because of this, information is often provided with
restrictions: specific policies must be followed in its use and
dissemination. Specifically:

� Information producers may wish to restrict who has
access to specific pieces of information based on the
requestor’s identify, affiliation, type of information re-
quested, or other factors. Thus we must have robust
authentication and authorization mechanisms that in-
formation owners will trust.

� Scalability concerns will drive the aggregation of in-
dividual information providers into collections, where
each collection may correspond to a different VO.
However, the administrators of these collections will
want to control membership, defining a policy under
which information providers can contribute to a VO.
Conversely, information providers may wish to assert
policy over which VOs they are prepared to join.

Fortunately, policy problems are simplified by the VO
paradigm. Because a VO typically groups together users
and resources who share common goals and approaches,
important policies are often uniform within the commu-
nity. This uniformity simplifies aggregate policy expres-
sion and also allows the construction of shared discovery
mechanisms that safely and efficiently provide specialized
or sensitive data only to VO members.

3. Architecture Overview

Our Grid information service architecture (Figure 2)
comprises two fundamental entities: highly distributedin-
formation providersand specializedaggregate directory
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values
type(s)
name

objectclass: service

dispatchtype: immediate

dn: queue=default, hn=hostX

url: gram://hostX/default

objectclass: queue

objectclass: computer

system: mips irix

dn: hn=hostX

dn: perf=load5, hn=hostX

objectclass: perf

objectclass: loadaverage

period: 10
load5: 3.2

dn: store=scratch, hn=hostX

objectclass: storage

objectclass: filesystem

free: 33515 MB
path: /disks/scratch1

Figure 3. The LDAP data model represents information as a set of objectsorganized in a hierarchical
namespace. Each object is tagged with one or more named types. Each object contains bindings of
values to named attributes according to the object type(s).

services. Information providers form a common, VO-
neutral infrastructure providing access to detailed, dynamic
information about Grid entities. For example, a provider
for a compute resource might provide information about
the number of nodes, amount of memory, operating system
version number and load average; a provider for a running
application might provide information about its configura-
tion and current status. Aggregate directories provide often
specialized, VO-specific views of federated resources, ser-
vices, and so on. For example, a directory intended for use
by a broker might list the computers available to a VO orga-
nized by operating system type; another directory, intended
to support application monitoring, might keep track of run-
ning applications.

An information provider is defined as a service that
speaks two basic protocols. The GRid Information Protocol
(GRIP) is used to access information about entities, while
the GRid Registration Protocol (GRRP) is used to notify
aggregate directory services of the availability of this infor-
mation. These two protocols are the fundamental building
blocks on which our architecture is based. For an entity to
be known to VO participants, it must either speak these pro-
tocols directly (hence being its own information provider)
or interact with some other entity that acts as an informa-
tion provider on its behalf.

We define an aggregate directory as a service that uses
GRRP and GRIP to obtain information (from a set of infor-
mation providers) about a set of entities, and then replies
to queries concerning those entities. As we explain below,
an aggregate directory can itself adopt GRIP as the protocol
by which others query it (and, for that matter, GRRP as the
protocol that it uses to notify others of its existence), but it
is not obliged to do so: in fact, such directories can support
arbitrary data models, query languages, and protocols.

The definition of GRIP and GRRP enables a clean sepa-
ration of concerns between enquiry and discovery. A wide
variety of discovery strategies can be implemented simply

by constructing aggregate directory services that use GRIP
and GRRP in different ways to obtain information that is
then used to construct various precomputedindices. We dis-
cuss this issue below, but here are two examples:

� A name-serving aggregate directory simply records the
name of each entity for which a GRRP registration was
recorded, and supports only name-resolution queries.

� A relational aggregate directory follows up each regis-
tration of a new entity with a GRIP query to determine
its properties, which it records in a relational database
against which relational queries can be performed.

Notice that there will be inevitably be tradeoffs between the
power of an index, the cost associated with maintaining it,
and its freshness. Metadata such as timestamps and confi-
dence estimates can be used to guide how often information
maintained in indices is updated, and both push and pull
models can be used to move information from providers to
directories. Of course, following discovery, a client can al-
ways refresh interesting information by directly consulting
the authoritative source.

Aggregate directories make an important contribution
to the scalability of the information services architecture.
Each aggregate directory provides a single point of con-
tact to which queries for a specific VO may be directed.
More importantly, each aggregate directory defines a scope
within which search operations take place, allowing users
and other services within a VO to perform efficient discov-
ery without resorting to searches that do not scale well to
large numbers of distributed information providers. This
scoping allows many independent VOs to co-exist in a grid
without adversely affecting their individual discovery per-
formance.

We observe that this architecture embodies many of the
same structural principles as the World-Wide Web, arguably
the largest federated information system. GRIP corresponds
to HTTP, and aggregate directories to search engines.
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Figure 4. Fault-tolerant registration. Information providers register with aggregate directories to
provide user communities with listings of available resources. The redundant VO-A directories
converge, while the VO-B directories cannot due to network partition.

4. Base Protocols

We now describe GRIP and GRRP, focusing on defining
the protocols and indicating the roles that they play in a Grid
information system. We also note a few roles that are best
addressed by other protocols. In Section 10, we discuss how
GRIP and GRRP have been implemented in MDS-2.

4.1. Grid Information Protocol

A user, or more frequently an aggregate directory or
other program, uses GRIP to obtain information from an in-
formation provider about the entity(s) on which the provider
possesses information.

Because an information provider can possess informa-
tion on more than one entity, GRIP supports both discovery
and enquiry. Discovery is supported via asearch capability.
For example, consider an information provider that main-
tains information on a set of workstations. A broker might
then perform a search on that provider to obtain a set of re-
sults that roughly match a given criteria. From the set of
discovered resources, enquiry can be used to refine the set
of resources upon which a broker may schedule. Enquiry
corresponds to a directlookup of information: the enquiry
supplies the resource name and the provider returns the re-
source description. Subscription (i.e., a request that results
in the subsequent delivery of a sequence of updates) can be
an important enquiry mode, and should be supported.

We adopt the standard Lightweight Directory Access
Protocol (LDAP) [21] as the protocol for GRIP. LDAP de-
fines a data model, query language, and wire protocol. As-
pects of thedata model are illustrated in Figure 3; no-
tice in particular the use ofobject classes with named
types to characterize resources, and the hierarchicaldistin-
guished names used to name resources within the informa-
tion provider. Thequery language supports search, lookup,

and (via recently proposed extensions) subscription opera-
tions. A filter can be used in all cases to specify a set of
criteria to be matched. A subset of attributes associated
with an entity can be retrieved—reducing the amount of
information that must be transmitted. We have used this
query language within MDS-1 [13] with great success in a
Grid context. Finally, the LDAPprotocol supports a query-
reply exchange, with the query specifying a search, lookup,
or (via recent proposed “persistent search” extensions [32])
subscription, and the reply comprising the specified fields
of any matching object(s).

We emphasize that we adopt LDAP as a data model,
query language, and protocol, not an implementation ve-
hicle. Hence, while it is certainly feasible to use existing
LDAP server technology to construct information providers
(and/or aggregate directories), this strategy may be inappro-
priate if the LDAP server implementation is optimized for
read access to static data.

One consequence of the above is that there is no require-
ment that an information provider explicitly store informa-
tion about its entity(s): it can, for example, generate dy-
namic information only as it is requested. It follows that the
number of entities do not necessarily have to be enumer-
able: a provider can represent an infinite parametric name
space, generating elements of this space lazily in response
to direct queries. For example, we have constructed in col-
laboration with Rich Wolski and Martin Swany an infor-
mation provider that allows users to request bandwidth in-
formation for entities corresponding to network links con-
necting specified endpoints. In practice, such requests do
not access a database maintained within the information
provider, but are handed off to the Network Weather Ser-
vice (NWS) [40] network performance characterization sys-
tem, which may variously access cached data or perform an
experiment. Information providers that support queries on
nonenumerable namespaces might signal an error and/or re-
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host host host host

hostCenter Dir.
1

Center Dir.
2

host

host: hn=R3
host: hn=R2
host: hn=R1

host: hn=R2
host: hn=R1

host: hn=R1
host: hn=R2, O=O2
host: hn=R1, O=O2
host: hn=R3, O=O1

O1 O2 R1

R2R1R3R2R1

host: hn=R2, O=O1
host: hn=R1, O=O1

VO Directory

Information Provider

Figure 5. Hierarchical discovery. Two resource centers and one individual are contributing resources
(bottom, squared boxes) to a VO. The three aggregate directories (upper rounded boxes) that form the
associated hierarchical discovery service are organized in a way that matches this logical structure.
Notice how resource names can be used to scope searches to particular organizations, if this is
desired; alternatively, searches can be directed to the root directory without concern for scope.

turn partial results for searches that use too wide a scope.
We also observe that LDAP naming conventions (i.e., hi-

erarchical, globally unique, distinguished names) need only
be observed within the scope of a specific provider or di-
rectory. While common naming conventions can simplify
some administrative tasks, globally unique names are de-
fined by combination of name of information within the
scope of the provider and the name of the provider (i.e., an
LDAP URL that includes the host name, port number and
distinguished name of the information in question).

4.2 Limitations of Information Protocol

The LDAP query language also has its limitations. In
particular, it cannot specify relational “joins,” i.e., opera-
tions that allow data from several different typed entities
to be combined to yield a new composite entity. We be-
lieve that join should not be provided as part of the basic
GRIP query language. The utility of generalized joins is
limited within the Grid due to our inability to view a con-
sistent global state. A join operation can be supported when
needed via an optimized discovery service, using tech-
niques such as those found in current LDAP-based metadi-
rectory servers (Section 5.2).

4.3. The Grid Registration Protocol

GRRP complements GRIP by defining a notification
mechanism that one service component can use to “push”
simple information about its existence to another element of
the information services architecture. For example, GRRP
is used by an information provider to notify a aggregate di-
rectory of its availability for indexing, or by an aggregate
directory to invite an information provider to join a VO.

GRRP is defined in detail elsewhere [18]. In brief, it is
a soft-state protocol [5], meaning in our context that state

established at a remote location by a notification (e.g., an
index entry for an information provider) may eventually be
discarded unless refreshed by a stream of subsequent noti-
fications. Such protocols have the advantages of being both
resilient to failure (a single lost message does not cause irre-
trievable harm) and simple (no reliable “de-notify” protocol
message is required).

Each GRRP message contains the name of the service
that is being described (i.e., a URL to which GRIP mes-
sages can be directed), the type of notification message, and
timestamps that determine the interval over which the noti-
fication should be considered to hold. The GRRP definition
does not specify the underlying transport: it is designed to
run over an unreliable transport, but a reliable transport can
also be used. We discuss in Section 10 below the transport
adopted in our MDS-2 implementation of GRRP.

The use of GRRP in constructing resilient aggregate di-
rectories is depicted in Figure 4. Under the direction of lo-
cal and VO-specific policies, an information provider de-
termines the directory(s) with which it will register. The
provider then sustains a stream of registration messages to
each directory. After some time without a refresh, the direc-
tory can assume the provider has become unavailable, and
purge knowledge of it from its directory. As long as a di-
rectory has fresh knowledge of a provider, it might include
that provider in results for relevant discovery queries. Con-
versely, when its knowledge of a provider becomes stale,
the discoverer might omit that provider from results. The
question of how a resource provider determines to which
directories to register is discussed in Section 9.

GRRP provides a discoverer with anunreliable failure
detector [7]. A discoverer can decide at a certain point (e.g.,
after a certain amount of time has passed without a registra-
tion message being received from a producer) that the pro-
ducer has failed or become inaccessible. (Discriminating
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between resource and network failure is fundamentally dif-
ficult for any remote monitoring approach.) Any such deci-
sion can be erroneous, as the missing registration messages
may have been sent but discarded by a lossy network con-
nection. There is thus a tradeoff to be made, when choosing
the criteria used to decide that a producer has failed, be-
tween likelihood of an erroneous decision and timeliness of
failure detection. An experimental study of a failure de-
tection service provided in earlier versions of the Globus
Toolkit, the Globus Heartbeat Monitor (now superseded by
GRRP) [33], showed that in typical wide area networks,
failure detectors can operate effectively despite often high
packet loss rates [3, 25, 4, 28].

5. Aggregate Directory Services

Having defined GRIP and GRRP, we turn to the question
of how to create aggregate directory services. As we indi-
cated above, one can define any directory that one wants—
there are no technical limitations on what sorts of indices or
naming, search, and monitoring strategies directories may
maintain, or on what data models, query languages, and
protocols they may support. Nevertheless, there are signif-
icant benefits to adopting standard data models, query lan-
guages, and protocols within aggregate directories, as oth-
erwise users and programs have to write different code to
query each directory variant that might be produced. We an-
ticipate that in practice a Grid information system will see a
small number of standard aggregate directory structures. In
the following, we first explain how GRIP and GRRP can be
used to construct a standard hierarchical discovery service
and then briefly discuss some alternatives.

5.1. GRIP and GRRP for Aggregate Directories

Figure 5 shows how a hierarchical discovery service can
be structured as a network of aggregate directories. Each
directory uses the GRIP data model, query language, and
protocol, and acts as an information provider that contains
information about all of the resources beneath it in the hi-
erarchy. Directories use GRRP to register with higher-level
directories to construct the hierarchy. Such aggregate direc-
tories could also use lossy aggregation techniques, as in the
Service Discovery Service [9], which hashes descriptions
and summarizes hashes via Bloom filtering.

This hierarchical discovery structure conveniently mir-
rors the typical decomposition of VO administration, with
multiple site administrators coordinating with the VO ser-
vice administrator(s). Each site administrator can main-
tain their local aggregate directory and register it with di-
rectories maintained by the VOs in which the site partici-
pates. We note that such hierarchical directories can easily
be created using GRRP. Local aggregate directories can use
GRRP to register with VO directories just as information

providors use GRRP to register with local aggregate direc-
tories, as described in the preceding section.

5.2. Specialized Services

We envision a hierarchical discovery service serving pri-
marily as a name-based location service, allowing users to
discover what resources are available within a VO but not
supporting sophisticated queries on those resources.

Given such a service, we can easily construct more spe-
cialized aggregate directories that use the basic hierarchical
discovery mechanism to discover VO members and then use
GRIP queries to gather more detailed information about the
member resources. The specialized directory servers can
use this detailed resource information to construct search
indices that can be used to answer various types of qualita-
tive queries. In effect, the result is that the specialized di-
rectories have defined an alternative organization or names-
pace for the information, creating a view that is optimized
towards specific usage patterns.

A specialized aggregate directory may choose to adopt
specialized update strategies to improve its ability to per-
form its specialized functions. For example, a directory de-
signed to locate “idle multicomputers” might maintain an
index of only these resources, and then keep careful track
of changing patterns of multicomputer load so as to max-
imize accuracy while minimizing query traffic. A direc-
tory designed to monitor network resources for unaccept-
able load conditions might use historical information to di-
rect its queries (whether using push or pull models) to ex-
pected trouble spots. In constructing such specialized ser-
vices, one can of course use any appropriate database tech-
nology to maintain the necessary indices.

5.3. Alternative Directory Protocols

We pointed out above the benefits of using the GRIP data
model, query language, and protocol when constructing ag-
gregate directories. However, one can certainly define alter-
natives. For example, it has been argued [12] that relational
data models and query languages can be useful in Grid set-
tings, due to their ability to support join operations. (E.g.,
“find me an idle computer that is connected to an idle net-
work.”) Directories that maintain relational representations
of associated resources and that support SQL or some other
relational query language can of course be constructed in
this framework. Or, we can construct directories that em-
ploy the Condor matchmaking algorithm as a query evalua-
tion mechanism [23] (e.g., see [38]).

6. Monitoring and Other Applications

In the preceding section we described how GRIP and
GRRP can be used to construct a variety of information ser-
vice components called, collectively, aggregate directories.
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These same protocols, and many of the same strategies, can
be used to construct a variety of other services and appli-
cations, concerned, as we noted in the introduction, with
such things as brokering, monitoring, application adapta-
tion, troubleshooting, and performance diagnosis.

Many such applications are concerned primarily with
monitoring rather than discovery of Grid entities. Monitor-
ing and discovery are closely related activities that involve,
in many cases, the same types of information—but that tend
to differ in terms of their preferred delivery mechanisms. In
the case of discovery, we are primarily concerned with the
characteristics of an entity at a specific point in time, and
so typically want to request information explicitly. In the
case of monitoring, we are more often interested in how
characteristics vary over time, and so may prefer that the
information is delivered asynchronously if and when speci-
fied conditions are met: for example, when an information
value changes by a specified amount.

GRIP is designed to support both delivery models and
hence to support both discovery and monitoring. Inpull
mode, a query-response exchange supports on-demand ac-
cess to information; inpush mode, an initial subscription
request [32] requests subsequent asynchronous delivery.

However, even given this flexibility, there are informa-
tion delivery roles for which GRIP is ill-suited. The re-
trieval of archival information can require the support of
more powerful database query interfaces, to reduce search
costs over a continuously growing mountain of data. Sim-
ilarly, various flavors of event delivery system [6] can
provide specialized synchronization and reliability proper-
ties (e.g., source-ordered delivery to multiple recipients, or
exactly-once delivery). Nevertheless, we believe that GRIP
supports the discovery and characterization needs of a large
proportion of remote observers—and we emphasize that the
adoption of this standard approach has tremendous advan-
tages in terms of interoperability.

For those exceptional situations where GRIP is not ade-
quate, our architecture allows for extensions in two ways:

� GRIP extension. Resources may offer additional infor-
mation delivery capabilities beyond those provided by
GRIP. For example, an information provider that in-
terfaces to a large archive might implement protocol
extensions to support richer relational queries.

� Service publication. GRRP and GRIP are designed to
permit discovery of other Grid resources and services.
For example, a high data rate network monitor [36]
may deliver information via a specialized, binary-
encoded push protocol. The information provider for
this monitor can indicate that this protocol is sup-
ported, and provide the information needed to sub-
scribe to it.

We emphasize that such capabilities should be viewed as
extensions, not replacements, for GRIP and GRRP, which

must be universally deployed to ensure interoperability. Ex-
tensions permit more specialized behaviors in specialized
situations, and their use should be circumscribed. For ex-
ample, the network monitor might push its information to
a network profiler that publishes summary information for
general distribution using standard GRIP and GRRP.

7. Security

Physical and virtual organizations typically define poli-
cies controlling who can access information about their re-
sources. Any Grid information service must hence incorpo-
rate security mechanisms so that it can comply with these
policies. Security issues arise with both GRIP and GRRP.

Our security approach is intended to support a wide
range of access control policies. We assume that an infor-
mation provider may specify, for each piece of information
that it maintains, the credentials that must be presented to
access that information. These credentials may be iden-
tity credentials, in which case the access control policy is
essentially an access control list, or a capability issued by
some authority, in the case of policies based, for example,
on group membership [27]. GSI public-key security mech-
anisms are used to verify credentials and to achieve mu-
tual authentication between information consumers and in-
formation providers.

Aggregate directories pose interesting security issues,
as these services make available to others information ob-
tained from information provider(s). This distribution of
information must be performed in a fashion consistent with
the policy of the underlying provider(s). Fortunately, our
architecture can support a number of alternatives:

� The information provider(s) and aggregate directory
have the same data access policy and the provider(s)
trusts the directory. Here, the provider can respond
to any authenticated query from the directory, which
it trusts to apply its policy on its behalf. We note that
this case may be common, as VOs often link together
institutions and people with common policy concerns.

� The information provider(s) limits the information that
is available to an aggregate directory. For exam-
ple, provider policy may make operating system type
known to a directory, but demand that load averages
can only be given to specific users. A query for ma-
chines running RedHat Linux 6.2 with a load of less
than 1.0 would thus require a first query to the direc-
tory to identify Linux platforms and a second set of
queries (perhaps subscriptions) to each machine en-
quiring as to their load. The second query would re-
quire re-authentication and then application of the lo-
cal access control based on the requestor’s identity.

� The information provider makes no information known
other than its existence. In this situation, the direc-
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tory can only enumerate the known resources, with no
attribute-based indexing possible.

� The information provider places no restriction on
the information provided. In this case, authenticated
queries are not required.

Security issues also arise with respect to the registration
protocol. We need to (1) ensure that registration messages
are authentic, and (2) control which registration events are
accepted and which are denied. Authenticity of GRRP mes-
sages can be determined by two alternative means. GRRP
messages can be delivered over a secure channel, such as
that provided byglobus io using GSI. Alternatively, we can
cryptographically sign each GRRP message with the cre-
dentials of the registering entity. A variety of access control
mechanisms can be applied at the message destination prior
to accepting the message, as we know the identity of the
service generating the registration message.

8. Generating Unique Names

We touch briefly upon the tangential, but related and im-
portant, topic of naming. It can be desirable to be able to as-
sign entities names that are guaranteed to be unique within
some scope [26]. (Globally unique names are a special case
of this requirement.) We may want unique names so that we
can refer to the same entity repeatedly, or so we can deter-
mine whether or not the results of two searches refer to the
same entity.

Obtaining unique names is not straightforward. Some
resources have DNS names, but certainly not all, so some
other mechanism is also required. To address this problem,
we describe two possible approaches, one based on naming
authorities and one on probabilistic techniques.

In the first approach, we introducenaming services re-
sponsible solely for generating names guaranteed to be
unique within the scope that the naming service operates.
Such a service could be operated by individual VOs for
their own private purposes; alternatively, an international
standards body could be chartered with operating the ser-
vice so as to provide globally unique names. (The Domain
Name Registry that manages Internet domain names is an
example of such a service.) Particularly in the latter case, a
hierarchical organization of this service will be important,
for scalability. This use of a distinct naming service has the
disadvantage of introducing a new class of infrastructure,
which must be created, maintained, etc.

In the hierarchical organization described in Section 5.1,
each aggregate directory effectively serves as a local nam-
ing authority. Note that in this case, administrative over-
heads are low but names are only relatively unique: dif-
ferent entries can have the same name, and a single entry
multiple different names, within different hierarchies.

In the second approach, we assign names at random from
a large name space, hence obtaining a name that is highly
likely to be unique. A Globally Unique Identifier (GUID)
is an example of such a system. Of course, such names
do not contain any structural information: they cannot be
used to scope searches, for example. But we can use other
techniques, such as the hierarchies of Section 5.1, for that
purpose. This may be the preferred approach.

It can also be desirable to be able to enforce standard for-
mats for entity descriptions, so that entities that share major
characteristics have comparable descriptions. This implies
a need for both a convenient and extensible mechanism for
defining information types, and a mechanism for assigning
(and discovering) type names. If required, this capability
can be provided via type authorities.

It is important to note that neither naming nor typing is
a universal requirement: one can construct useful discovery
and monitoring systems that provide neither unique names
nor consistent naming of types. (For example, the Condor
Matchmaker [23] does not enforce a type system, relying in-
stead on informal procedures for achieving reasonably con-
sistent descriptions.) Hence, we argue that a Grid infor-
mation service should support naming and typing but not
force systems that do not require these capabilities to pay
for them.

9. Configuring Information Services

Our previous discussion on constructing aggregate direc-
tories was predicated on the assumption that the information
providers knew in which aggregate directories they wished
to be registered. In this section, we examine three possible
techniques by which this association can be made. Others
approaches are also possible.

Manual configuration. Users or system administrators
can configure information providers with the addresses of
directories, or directories with the names of providers. This
approach has obvious scalability problems, but is practical
in the case of small and/or long-lived VOs. Note that in
hierarchical organizations (Section 5.1), an entire organiza-
tion’s resources can be added to a VO by registering the
appropriate directory, thus overcoming scalability issues.

Automated discovery based on a hierarchical discovery
service. New discovery services can potentially be config-
ured via searches of a hierarchical discovery service (Sec-
tion 5.1), if one exists.

Automated discovery based on other information ser-
vices. We can use services such as SLP [29], DNS [24], or
UDDI [2] to assist with configuration. For example, clients
can use SLP to locate a default local directory from which
to initiate VO resource discovery. Multicast techniques may
sometimes be appropriate (see Section 11.2).
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10. Implementation

We have constructed a Grid information service, MDS-2,
that implements the architecture described above. MDS-2.0
was released in the Globus 1.1.3 distribution in June 2000
and has since been widely deployed. We describe here the
MDS-2.1 version of MDS-2, which offers improved perfor-
mance and additional features over MDS-2.0, and which we
are currently preparing for release.MDS-2.1 implements all
functionality described in this paper, with the exception of
push operations.

10.1. MDS-2.1 Protocol Engine

Recall that our architecture defines two base protocols,
GRIP and GRRP, with GRIP defined to be LDAP and
GRRP defined in [18] but without specifying transport. In
MDS-2.1, we adopt LDAP as our GRRP transport, with
GRRP messages mapped onto LDAPadd operations and
then carried via the normal LDAP protocol. This choice of
LDAP was made for pragmatic reasons (it simplified devel-
opment); alternative GRRP transport protocols are certainly
possible and in the future we may use SOAP for this pur-
pose, if the use of SOAP in other Grid services becomes
prevalent.

The use of a standard protocol allows us to exploit a
large body of existing code in our MDS implementation, in-
cluding, in the case of MDS-2.1, the OpenLDAP client and
server implementation of the LDAP V3.0 protocol. (MDS-
2.0 implemented LDAP V2.0.) The OpenLDAP server de-
fines an extensible server framework in which specialized
backends can by plugged into a standard protocol inter-
preter. The interpreter handles all authentication, data for-
matting, query interpretation, results filtering, network con-
nection management, and dispatch to the appropriate back-
end. This flexible design allows us to use the OpenLDAP
server without modification.

10.2. Security

MDS-2.1 offers complete integration with GSI single
sign-on authentication and access control mechanisms [16],
and both authentication and access control can be supported
if required by information provider and/or information con-
sumer policy. This integration of GSI into OpenLDAP did
not require any modification to the normal code base, due to
OpenLDAP 2.0 including optional security bindings using
the Simple Authentication and Security Layer (SASL) li-
brary, which in turn includes bindings for GSS-API, a stan-
dard authentication API of which GSI is an implementation.
Thus we can load GSI support dynamically into a standard
OpenLDAP server.

MDS-2.1 access control list functionality is consistent
with defined LDAP access control mechanisms and sup-

ports the specification and enforcement of policies that re-
strict access to specific pieces of information. Richer ac-
cess control mechanisms are currently being developed for
LDAP and we will exploit these once they become standard-
ized. OpenLDAP also passes authentication information to
the information service-specific backends, a feature that en-
ables information providers to enforce arbitrary policy con-
straints on the information that they provide. Additional
policy mechanisms will be introduced into upcoming revi-
sions to the MDS-2 server code. Support for capabilities
will be added when the Globus Community Authorization
Service is complete.

10.3. Information Providers (GRIS)

The MDS-2 release includes a standard, configurable in-
formation provider framework called a Grid Resource In-
formation Service (GRIS). This framework is implemented
as an OpenLDAP server backend that can be customized
by plugging in specific information sources. To date, we
have implement information sources for static host infor-
mation (operating system version, CPU type, number of
processors, etc.), dynamic host information (load average,
queue entries, etc.), storage system information (available
disk space, total disk space, etc.), and network information
via the Network Weather Service (network bandwidth and
latency, both measured and predicted) [40]. Others, includ-
ing highly dynamic information sources that will push fre-
quent updates, are planned.

GRIS authenticates and parses each incoming GRIP re-
quest and then dispatches those requests to one or more “lo-
cal” information providers, depending the type of informa-
tion named in the request. Results are then merged back
to the client. To efficiently prune search processing, a spe-
cific provider’s results are only considered if the provider’s
namespace intersects the query scope.

The GRIS communicates with an information provider
via a well-defined API. We have implemented two variants
of this API. The simpler version is implemented via a set
of scripts (typically Unix shell scripts) that are called by the
back end. This more sophisticated version is implemented
via loadable modules, thus allowing provider implementa-
tions to execute within the server. Such modules allow low-
latency providers to execute without the overhead of server-
side process creation, and also allow the construction of effi-
cient providers requiring RAM-based persistent state. Thus
a GRIS is configured by specifying the type of information
to be produced by a provider and the provider-defined set of
routines that implement the GRIS API. Configuration can
be done either dynamically or statically via configuration
files.

To control the intrusiveness of GRIS operation, improve
response time, and maximize deployment flexibility, each
provider’s results may be cached for a configurable period
of time to reduce the number of provider invocations; this
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cache time-to-live (TTL) is specified per-provider as part of
the local configuration, and the appropriate value depends
greatly on both the dynamism of the modeled resource and
the cost of the provider mechanism. By providing caching
as part of the GRIS, we simplify the implementation of in-
formation providers.

Results returned by an information provider are filtered
by the GRIS to eliminate any objects that do not match the
client’s search space and/or filter constraints, prior to send-
ing them to the destination. This is not a performance opti-
mization, but a necessary step to ensure that the protocol’s
search semantics are implemented correctly. Filtering is im-
plemented by the GRIS and not the information providers so
that (1) simple providers need not duplicate this implemen-
tation effort, and (2) cached providers can maximize their
performance by returning a superset of results that are then
processed out of the cache for each client request.

10.4. Aggregate Directory (GIIS)

The MDS-2.1 code base also provides a framework for
constructing aggregate directories called Grid Index Infor-
mation Services (GIIS), plus a simple instantiation of this
framework that implements a simple aggregate directory
that provides the hierarchical structure discussed in Sec-
tion 5.1. The simple directory accepts GRRP messages
from “child” GRIS or GIIS instances and merges these in-
formation sources into a unified information space. Client
searches may obtain information from any or all of the
GIIS’ children, as illustrated in Figure 5.

The GIIS framework comprises three major components:
generic GRRP handling, pluggable index construction, and
pluggable search handling. As with GRIS, GIIS func-
tionality is implemented as a special purpose backend for
an OpenLDAP server, and in fact index construction and
search handling both use the same APIs used to interface a
GRIS to an information source.

As mentioned above, GRRP messages are delivered us-
ing LDAP as the transport protocol. The OpenLDAP fron-
tend decodes GRRP messages and delivers them to the
backend to perform any actions necessary to construct and
maintain the GIIS’ indices. In the case of our simple aggre-
gate directory, these actions comprise little more than man-
agement of alist of active providers. In a more complex
directory, index maintenance might include the gathering
and transformation of additional state information from the
remote providers using GRIP.

Our GIIS (and GRIS) implementations are configured so
that GRRP can be used for both registration and invitation.
In registration, a GRIS explicitly registers with an aggregate
directory: in effect, it joins a VO. In the case of invitation, a
GRIS is asked to join by the aggregate directory service—
or perhaps a third party. If a GRIS agrees to join, it turns
around and uses GRRP to register itself with the specified
aggregate directory in a fault-tolerant manner.

Pluggable search handling allows for the implementation
of customized data access and search mechanisms. In our
simple aggregate directory service, we implementchaining:
GRIP requests directed to the GIIS are simply forwarded on
to the appropriate information provider for response. The
list of active providers constructed in response to GRRP
messages is used to map between the requested entity name
and its location, or to support searches across multiple enti-
ties.

Performance concerns make caching data within the
GIIS desirable, and this capability is provided as part of the
basic GIIS framework. As discussed in Section 7, access
control issues complicate caching. Clearly, the GIIS can
fetch and cache any data available to anonymous clients.
Because the GIIS can also bind using a trusted server cre-
dential, each GRIS may export some data that it trusts the
GIIS to handle properly. In the absence of delegation, GIIS
is unable to transfer data from GRIS to client if the data is
restricted by the GRIS to only be visible to that client. In
this situation, we can return the name of the information
provider directly to the client in the form of a LDAP URL
using the referral mechanisms defined as part of the stan-
dard LDAP protocol.

It should be clear from this discussion that our GRIS and
GIIS implementations have much in common. Both rely on
an LDAP front end for protocol processing, authentication,
and result filtering. Both use a common API for customiza-
tion, and can in fact co-exist within the same server. Using
a common protocol for provider and directory interactions
not only promotes interoperability, it also simplifies imple-
mentation.

11. Related Work

We have referred to a range of related work in the body of
the paper. Here we make additional comments concerning
the use of standard directory services, metadirectory ser-
vices, and other work on service discovery and monitoring.

11.1. Directory Services

One approach to constructing a Grid information ser-
vice is to push all information into a directory service.
We employed this approach in early versions of MDS-
1 [13]. While this system pioneered information services
for the Grid, the strategy of collecting all information into
a database inevitably limited scalability and reliability, even
when (as in later versions of MDS-1) LDAP distribution and
replication mechanisms were used. In addition, the well-
defined hierarchical naming structure required that prior ar-
rangements be established between participants on name
space structure, which proved problematic in practice.

Metadirectory services (e.g., RadiantOne) focus on cre-
ating a uniform directory service from diverse information
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sources. These services could, presumably, be used to cre-
ate specialized views associated with VOs. This can be ac-
complished by copying data and coordinate updates among
different information sources. Metadirectory services, how-
ever, suffer from the same problem as standard directory
services—they are not designed to handle highly dynamic
data. Moreover, scalability is limited due to the coordina-
tion required between a multitude of directory services.

11.2. Service Discovery

The Domain Name Service [24] and Globe [37] sys-
tems are both designed to support scalable service discov-
ery. These systems scale extremely well, to the extent that
all resources on the Internet can be named. These sys-
tems are used to map these names into IP addresses and
object brokers, respectively. Both systems, however, use
a predefined hierarchical naming scheme and only support
extremely simple queries, two assumptions that we cannot
make in the VO environment. In addition, neither support
security that controls access to information.

The Service Location Protocol (SLP) is a proposed pro-
tocol to simplify the advertisement and the discovery of net-
work resources [29]. SLP resources, which are associated
with a local intranet, are grouped into predefined admin-
istrative domains called “scopes” [29, 19]. Resource dis-
covery can be achieved via static configuration, DHCP re-
quest, or advertisement via IP multicast. The use of static
configuration or multicast makes SLP inappropriate to sup-
port VOs. VOs can be highly dynamic making static con-
figuration impractical. Furthermore, VOs can span multi-
ple intranet domains, making the use of broadcast protocols
problematic and restricting scalability. However, as noted
in Section 9, SLP and other similar services can be used to
assist with configuring a Grid information service.

A number of other proposed service discovery services
also rely on IP multicast to locate or to disseminate service
descriptions: for example, the Service Discovery Service
(SDS) [9], the JINI Lookup Service [39], and the wide area
extension to SLP, WASRV [31]. Although these services
differ in their description, matching, and security mecha-
nisms, the reliance on IP multicast makes them inappropri-
ate for our use.

11.3. Monitoring Services

Various systems support the monitoring of network and
Grid resources, services, and applications: for example,
NetLogger [36, 35], Autopilot [30], Remos [11], and Para-
dyn [20]. These systems incorporate a range of often so-
phisticated sensor interface, instrumentation, data collec-
tion, data filtering, and data summarization techniques that
have proven invaluable in a range of application experi-
ments. However, each systems uses a different data de-
livery protocol and while some (e.g., Autopilot and Re-

mos) provide limited directory support, there are no stan-
dard mechanisms for discovering and characterizing infor-
mation sources. The difficulties these heterogeneities cause
for applications that require integrated, end-to-end monitor-
ing and analysis emphasize the benefits of a uniform Grid
information architecture such as that proposed here.

12. Conclusions and Future Work

We have described a Grid information service architec-
ture that defines simple data models and registration and en-
quiry protocols for Grid entities, and supports the creation
of a wide assortment of specialized information services as
well as other high-level, information-intensive services.

Our implementation of this architecture, MDS-2, has
been widely deployed in a number of different configura-
tions as part of the Globus 1.1.3 software release. We are
currently working to incorporate subscription-basedpush
methods and more sophisticated access control methods.
We also plan to explore the construction of different and
more specialized types of aggregate directories, investigate
update versus freshness tradeoffs in directory implementa-
tion, explore applications in different settings and domains,
develop flexible configuration tools to enable lightweight
VO formation, and extend our security models to incorpo-
rate capabilities and delegation to enable more sophisticated
directory construction and caching of information provider
values.
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